RESUMO
The functional and architectural benefits of embryonic stem cells (ESC) and myoblasts (Mb) transplantations into infarcted myocardium have been investigated extensively. Whereas ESC repopulated fibrotic areas and contributed to myocardial regeneration, Mb exerted their effects through paracrine secretions and scar remodeling. This therapeutic perspective, however, has been less explored in the setting of nonischemic dilated cardiomyopathies (DCMs). Our aim was to compare the integration and functional efficacy of ESC committed to cardiac fate by bone morphogenic protein 2 (BMP-2) pretreatment and Mb used as gold standard following their transplantation into the myocardium of a mouse model of laminopathy exhibiting a progressive and lethal DCM. After 4 and 8 weeks of transplantation, stabilization was observed in Mb-transplanted mice (P = 0.008) but not in groups of ESC-transplanted or medium-injected animals, where the left ventricular fractional shortening (LVFS) decreased by 32 ± 8% and 41 ± 8% respectively. Engrafted differentiated cells were consistently detected in myocardia of mice receiving Mb, whereas few or no cells were detected in the hearts of mice receiving ESC, except in two cases where teratomas were formed. These data suggest that committed ESC fail to integrate in DCM where scar tissue is absent to provide the appropriate niche, whereas the functional benefits of Mb transplantation might extend to nonischemic cardiomyopathy.
Assuntos
Cardiomiopatia Dilatada/terapia , Células-Tronco Embrionárias/transplante , Mioblastos/transplante , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/mortalidade , Cardiomiopatia Dilatada/fisiopatologia , Diferenciação Celular , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos , Modelos Animais de Doenças , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Sobrevivência de Enxerto , Masculino , Camundongos , Desenvolvimento Muscular , Mioblastos/citologia , Mioblastos/metabolismo , Contração Miocárdica , Miocárdio/metabolismo , Miocárdio/patologia , FenótipoRESUMO
The LMNA gene encodes lamin A/C intermediate filaments that polymerize beneath the nuclear membrane, and are also found in the nucleoplasm in an uncharacterized assembly state. They are thought to have structural functions and regulatory roles in signaling pathways via interaction with transcription factors. Mutations in LMNA have been involved in numerous inherited human diseases, including severe congenital muscular dystrophy (L-CMD). We created the Lmna(ΔK32) knock-in mouse harboring a L-CMD mutation. Lmna(ΔK32/ΔK32) mice exhibited striated muscle maturation delay and metabolic defects, including reduced adipose tissue and hypoglycemia leading to premature death. The level of mutant proteins was markedly lower in Lmna(ΔK32/ΔK32), and while wild-type lamin A/C proteins were progressively relocated from nucleoplasmic foci to the nuclear rim during embryonic development, mutant proteins were maintained in nucleoplasmic foci. In the liver and during adipocyte differentiation, expression of ΔK32-lamin A/C altered sterol regulatory element binding protein 1 (SREBP-1) transcriptional activities. Taken together, our results suggest that lamin A/C relocation at the nuclear lamina seems important for tissue maturation potentially by releasing its inhibitory function on transcriptional factors, including but not restricted to SREBP-1. And importantly, L-CMD patients should be investigated for putative metabolic disorders.