RESUMO
Table olives are a major component of the Mediterranean diet and are associated with many beneficial biological activities, which are mainly related to their phenolic compounds. Olive fruit debittering process defines the quantitative and qualitative composition of table olives in biophenols. The aim of the present study was to evaluate the in vitro antioxidant capacity and DNA-protective activity of an extract originated from brine samples, according to the Greek style debbitering process of Kalamon olive fruits. The main phenolic components determined in the brine extract were hydroxytyrosol (HT), verbascoside (VERB) and tyrosol (T). The in vitro cell-free assays showed strong radical scavenging capacity from the extract, therefore antioxidant potential. At cellular level, human endothelial cells (EA.hy296) and murine myoblasts (C2C12) were treated with non-cytotoxic concentrations of the brine extract and the redox status was assessed by measuring glutathione (GSH), reactive oxygen species (ROS) and lipid peroxidation levels (TBARS). Our results show cell type specific response, exerting a hormetic reflection at endothelial cells. Finally, in both cell lines, pre-treatment with brine extract protected from H2O2-induced DNA damage. In conclusion, this is the first holistic approach highlighted table olive wastewaters from Kalamon- Greek style debittering process, as valuable source of bioactive compounds, which could have interesting implications for the development of new products in food or other industries.
RESUMO
Wine is an alcoholic beverage of complex composition obtained through the fermentation of grape must. The consumption of wine has already been associated with a multitude of beneficial effects due to its high polyphenolic content. In this study, four Greek emblematic wines from two red (i.e., Xinomavro and Agiorgitiko) and two white (i.e., Assyrtiko and Malagouzia) varieties were analyzed for the estimation of their antioxidant profiles. To address this question, we assessed their ability to scavenge both synthetic and endogenous free radicals, such as DPPHâ¢, ABTS+â¢, OHâ¢, O2-, their potential reducing power, and their antimutagenic and antigenotoxic properties. All varieties exhibited potent antioxidant activity, as indicated by the results of methods above, with the red wines appearing more effective than the white ones regarding antioxidant capacity. Our small-scale study is the first to reveal that these wine varieties may have the ability to scavenge the most reactive endogenous radicals. In the future, this finding must be accompanied by larger studies to fill a knowledge gap in the scientific literature concerning a holistic approach of the in vitro antioxidant action of plant polyphenolic compounds. Conclusively, we believe that wines possess high bioactivity that allow them to settle in the industry of food additives and medicinal products.