Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2402235, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965704

RESUMO

Exsolution of metal nanoparticles (NPs) on perovskite oxides has been demonstrated as a reliable strategy for producing catalyst-support systems. Conventional exsolution requires high temperatures for long periods of time, limiting the selection of support materials. Plasma direct exsolution is reported at room temperature and atmospheric pressure of Ni NPs from a model A-site deficient perovskite oxide (La0.43Ca0.37Ni0.06Ti0.94O2.955). Plasma exsolution is carried out within minutes (up to 15 min) using a dielectric barrier discharge configuration both with He-only gas as well as with He/H2 gas mixtures, yielding small NPs (<30 nm diameter). To prove the practical utility of exsolved NPs, various experiments aimed at assessing their catalytic performance for methanation from synthesis gas, CO, and CH4 oxidation are carried out. Low-temperature and atmospheric pressure plasma exsolution are successfully demonstrated and suggest that this approach could contribute to the practical deployment of exsolution-based stable catalyst systems.

2.
ACS Appl Mater Interfaces ; 12(33): 37444-37453, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32698571

RESUMO

The search for new functional materials that combine high stability and efficiency with reasonable cost and ease of synthesis is critical for their use in renewable energy applications. Specifically in catalysis, nanoparticles, with their high surface-to-volume ratio, can overcome the cost implications associated with otherwise having to use large amounts of noble metals. However, commercialized materials, that is, catalytic nanoparticles deposited on oxide supports, often suffer from loss of activity because of coarsening and carbon deposition during operation. Exsolution has proven to be an interesting strategy to overcome such issues. Here, the controlled emergence, or exsolution, of faceted iridium nanoparticles from a doped SrTiO3 perovskite is reported and their growth preliminary probed by in situ electron microscopy. Upon reduction of SrIr0.005Ti0.995O3, the generated nanoparticles show embedding into the oxide support, therefore preventing agglomeration and subsequent catalyst degradation. The advantages of this approach are the extremely low noble metal amount employed (∼0.5% weight) and the catalytic activity reported during CO oxidation tests, where the performance of the exsolved SrIr0.005Ti0.995O3 is compared to the activity of a commercial catalyst with 1% loading (1% Ir/Al2O3). The high activity obtained with such low doping shows the possibility of scaling up this new catalyst, reducing the high cost associated with iridium-based materials.

3.
Sci Rep ; 10(1): 5266, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210288

RESUMO

Composite materials consisting of metal and metal oxide phases are being researched intensively for various energy conversion applications where they are often expected to operate under redox conditions at elevated temperature. Understanding of the dynamics of composite evolution during redox cycling is still very limited, yet critical to maximising performance and increasing durability. Here we track the microstructural evolution of a single composite particle over 200 redox cycles for hydrogen production by chemical looping, using multi-length scale X-ray computed tomography. We show that redox cycling triggers a centrifugal redispersion of the metal phase and a centripetal clustering of porosity, both seemingly driven by the asymmetric nature of oxygen exchange in composites. Initially, the particle develops a large amount of internal porosity which boosts activity, but on the long term this facilitates structural and compositional reorganisation and eventually degradation. These results provide valuable insight into redox-driven microstructural changes and also for the design of new composite materials with enhanced durability.

4.
ACS Appl Mater Interfaces ; 12(14): 16436-16441, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32182419

RESUMO

Membranes are a critical technology for energy-efficient separation processes. The routine method of evaluating membrane performance is a permeation measurement. However, such measurements can be limited in terms of their utility: membrane microstructure is often poorly characterized; membranes or sealants leak; and conditions in the gas phase are poorly controlled and frequently far-removed from the conditions employed in the majority of real processes. Here, we demonstrate a new integrated approach to determine permeation rates, using two novel supported molten-salt membrane geometries. In both cases, the membranes comprise a solid support with laser-drilled pores, which are infiltrated with a highly CO2-selective molten carbonate salt. First, we fabricate an optically transparent single-crystal, single-pore model membrane by local laser drilling. By infiltrating the single pore with molten carbonate, monitoring the gas-liquid interface optically, and using image analysis on gas bubbles within the molten carbonate (because they change volume upon controlled changes in gas composition), we extract CO2 permeation rates with exceptional speed and precision. Additionally, in this arrangement, microstructural characterization is more straightforward and a sealant is not required, eliminating a major source of leakage. Furthermore, we demonstrate that the technique can be used to probe a previously unexplored driving force region, too low to access with conventional methods. Subsequently, we fabricate a leak-free tubular-supported molten-salt membrane with 1000 laser-drilled pores (infiltrated with molten carbonate) and employ a CO2-containing sweep gas to obtain permeation rates in a system that can be described with unprecedented precision. Together, the two approaches provide new ways to measure permeation rates with increased speed and at previously inaccesible conditions.

5.
Angew Chem Int Ed Engl ; 59(6): 2510-2519, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31804017

RESUMO

Particles dispersed on the surface of oxide supports have enabled a wealth of applications in electrocatalysis, photocatalysis, and heterogeneous catalysis. Dispersing nanoparticles within the bulk of oxides is, however, synthetically much more challenging and therefore less explored, but could open new dimensions to control material properties analogous to substitutional doping of ions in crystal lattices. Here we demonstrate such a concept allowing extensive, controlled growth of metallic nanoparticles, at nanoscale proximity, within a perovskite oxide lattice as well as on its surface. By employing operando techniques, we show that in the emergent nanostructure, the endogenous nanoparticles and the perovskite lattice become reciprocally strained and seamlessly connected, enabling enhanced oxygen exchange. Additionally, even deeply embedded nanoparticles can reversibly exchange oxygen with a methane stream, driving its redox conversion to syngas with remarkable selectivity and long term cyclability while surface particles are present. These results not only exemplify the means to create extensive, self-strained nanoarchitectures with enhanced oxygen transport and storage capabilities, but also demonstrate that deeply submerged, redox-active nanoparticles could be entirely accessible to reaction environments, driving redox transformations and thus offering intriguing new alternatives to design materials underpinning several energy conversion technologies.

6.
Nanoscale ; 11(36): 16935-16944, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31490503

RESUMO

Many catalysts and in particular automotive exhaust catalysts usually consist of noble metal nanoparticles dispersed on metal oxide supports. While highly active, such catalysts are expensive and prone to deactivation by sintering and thus alternative methods for their production are being sought to ensure more efficient use of noble metals. Exsolution has been shown to be an approach to produce confined nanoparticles, which in turn are more stable against agglomeration, and, at the same time strained, displaying enhanced activity. While exsolution has been extensively investigated for relatively high metal loadings, it has yet to be explored for dilute loadings which is expected to be more challenging but more suitable for application of noble metals. Here we explore the substitution of Rh into an A-site deficient perovskite titante aiming to investigate the possibility of exsolving from dilute amounts of noble metal substituted perovskites. We show that this is possible and in spite of certain limitations, they still compete well against conventionally prepared samples with higher apparent surface loading when applied for CO oxidation.

7.
Nanoscale ; 11(31): 14929-14936, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31361283

RESUMO

Porous Organic Cages (POCs) are an emerging class of self-assembling, porous materials with novel properties. They offer a key advantage over other porous materials in permitting facile solution processing and re-assembly. The combination of POCs with metal nanoparticles (NPs) unlocks applications in the area of catalysis. In this context, POCs can function as both the template of ultra-small NPs and a porous, but reprocessable, heterogeneous catalyst support. Here, we demonstrate the synthesis of ultra-small Pd NPs with an imine linked POC known as 'CC3', and show that hydrogen gas can be used to form metallic NPs at ∼200 °C without the reduction of the organic cage (and the accompanying, unwanted loss of crystallinity). The resulting materials are characterized using a range of techniques (including powder diffraction, scanning transmission electron microscopy and synchrotron X-ray absorption spectroscopy) and shown to be recrystallizable following dissolution in organic solvent. Their catalytic efficacy is demonstrated using the widely studied carbon monoxide oxidation reaction. This demonstration paves the way for using ultra-small NPs synthesized with POCs as solution-processable, self-assembling porous catalytic materials.

8.
Nat Chem ; 11(7): 638-643, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31133740

RESUMO

All real processes, be they chemical, mechanical or electrical, are thermodynamically irreversible and therefore suffer from thermodynamic losses. Here, we report the design and operation of a chemical reactor capable of approaching thermodynamically reversible operation. The reactor was employed for hydrogen production via the water-gas shift reaction, an important route to 'green' hydrogen. The reactor avoids mixing reactant gases by transferring oxygen from the (oxidizing) water stream to the (reducing) carbon monoxide stream via a solid-state oxygen reservoir consisting of a perovskite phase (La0.6Sr0.4FeO3-δ). This reservoir is able to remain close to equilibrium with the reacting gas streams because of its variable degree of non-stoichiometry and thus develops a 'chemical memory' that we employ to approach reversibility. We demonstrate this memory using operando, spatially resolved, real-time, high-resolution X-ray powder diffraction on a working reactor. The design leads to a reactor unconstrained by overall chemical equilibrium limitations, which can produce essentially pure hydrogen and carbon dioxide as separate product streams.

9.
Nat Commun ; 8(1): 1855, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29187751

RESUMO

Metal nanoparticles prepared by exsolution at the surface of perovskite oxides have been recently shown to enable new dimensions in catalysis and energy conversion and storage technologies owing to their socketed, well-anchored structure. Here we show that contrary to general belief, exsolved particles do not necessarily re-dissolve back into the underlying perovskite upon oxidation. Instead, they may remain pinned to their initial locations, allowing one to subject them to further chemical transformations to alter their composition, structure and functionality dramatically, while preserving their initial spatial arrangement. We refer to this concept as chemistry at a point and illustrate it by tracking individual nanoparticles throughout various chemical transformations. We demonstrate its remarkable practical utility by preparing a nanostructured earth abundant metal catalyst which rivals platinum on a weight basis over hundreds of hours of operation. Our concept enables the design of compositionally diverse confined oxide particles with superior stability and catalytic reactivity.

10.
ACS Catal ; 6(9): 5865-5872, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27668125

RESUMO

A series of microstructured, supported platinum (Pt) catalyst films (supported on single-crystal yttria-stabilized zirconia) and an appropriate Pt catalyst reference system (supported on single-crystal alumina) were fabricated using pulsed laser deposition and ion-beam etching. The thin films exhibit area-specific lengths of the three-phase boundary (length of three-phase boundary between the Pt, support, and gas phase divided by the superficial area of the sample) that vary over 4 orders of magnitude from 4.5 × 102 to 4.9 × 106 m m-2, equivalent to structural length scales of 0.2 µm to approximately 9000 µm. The catalyst films have been characterized using X-ray diffraction, atomic force microscopy, high-resolution scanning electron microscopy, and catalytic activity tests employing the carbon monoxide oxidation reaction. When Pt is supported on yttria-stabilized zirconia, the reaction rate clearly depends upon the area-specific length of the three-phase boundary, l(tpb). A similar relationship is not observed when Pt is supported on alumina. We suggest that the presence of the three-phase boundary provides an extra channel of oxygen supply to the Pt through diffusion in or on the yttria-stabilized zirconia support coupled with surface diffusion across the Pt.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA