Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18414, 2024 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117747

RESUMO

Dengue is a global health concern, and the host-viral interactions that regulate disease severity are largely unknown. Detrimental effects of neutrophils in this disease have been reported, but the precise mechanisms and functional properties of dengue-activated neutrophils are not fully characterised. Here, we measured the effects of dengue virus serotype 3 (DV3) on neutrophil lifespan and functions. We show that DV3 extends neutrophil survival with a significant proportion of cells surviving for 72 h post-incubation. These effects on neutrophil survival were greater than those observed by adding GM-CSF and TNF-α alone, but these cytokines enhanced survival induced by the virus. Enhanced reactive oxygen species (ROS) generation was observed following incubation with DV3 activation and this ROS production was enhanced by co-incubation with priming agents. In addition, DV triggered the enhanced IL-8 expression by the majority of neutrophils and a low percentage of cells were activated to express MCP-1 (CCL2). A low number of neutrophils showed increased co-expression of the migratory markers, CCR7 and CXCR4 which could promote their migration towards lymph nodes. DV3 significantly upregulated the BCL-XL gene at 3, 12, and 24 h, and the Mcl-1 gene at 12 h, following treatment. We also show that DV3 induces the Mcl-1 protein stabilization similar to GM-CSF. This report sheds new light on the mechanisms by which neutrophils may contribute to the pathology of dengue disease via delayed apoptosis and generation of pro-inflammatory molecules, and raises the possibility that dengue-activated neutrophils may play a role in activating cells of adaptive immunity.


Assuntos
Apoptose , Vírus da Dengue , Dengue , Proteína de Sequência 1 de Leucemia de Células Mieloides , Neutrófilos , Espécies Reativas de Oxigênio , Vírus da Dengue/fisiologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Humanos , Dengue/imunologia , Dengue/virologia , Espécies Reativas de Oxigênio/metabolismo , Sorogrupo , Sobrevivência Celular
2.
BMC Infect Dis ; 22(1): 234, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255835

RESUMO

BACKGROUND: Ozone (O3) is an effective disinfectant agent that leaves no harmful residues. Due to the global health crisis caused by the COVID-19 pandemic, surgical masks are in high demand, with some needing to be reused in certain regions. This study aims to evaluate the effects of O3 for pathogen disinfection on reused surgical masks in various conditions. METHODS: O3 generators, a modified PZ 2-4 for Air (2000 mg O3/L) and a modified PZ 7 -2HO for Air (500 mg O3/L), were used together with 1.063 m3 (0.68 × 0.68 × 2.3 m) and 0.456 m3 (0.68 × 0.68 × 1.15 m) acrylic boxes as well as a room-sized 56 m3 (4 × 4 × 3.5 m) box to provide 3 conditions for the disinfection of masks contaminated with enveloped RNA virus (105 FFU/mL), bacteria (103 CFU/mL) and fungi (102 spores/mL). RESULTS: The virucidal effects were 82.99% and 81.70% after 15 min of treatment with 2000 mg/L O3 at 1.063 m3 and 500 mg/L O3 at 0.456 m3, respectively. The viral killing effect was increased over time and reached more than 95% after 2 h of incubation in both conditions. By using 2000 mg/L O3 in a 1.063 m3 box, the growth of bacteria and fungi was found to be completely inhibited on surgical masks after 30 min and 2 h of treatment, respectively. Using a lower-dose O3 generator at 500 mg O3/L in 0.456 m3 provided lower efficiency, although the difference was not significant. Using O3 at 2000 mg O3/L or 500 mg O3/L in a 56 m3 room is efficient for the disinfection of all pathogens on the surface of reused surgical masks. CONCLUSIONS: This study provided the conditions for using O3 (500-2000 mg/L) to reduce pathogens and disinfect contaminated surgical masks, which might be applied to reduce the inappropriate usage of reused surgical masks.


Assuntos
COVID-19 , Ozônio , Desinfecção , Humanos , Ozônio/farmacologia , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA