Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glia ; 66(4): 762-776, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29226549

RESUMO

The detection of food odors by the olfactory system, which plays a key role in regulating food intake and elaborating the hedonic value of food, is reciprocally influenced by the metabolic state. Fasting increases olfactory performance, notably by increasing the activity of olfactory bulb (OB) neurons. The glutamatergic synapses between olfactory sensory neurons and mitral cells in the OB glomeruli are regulated by astrocytes, periglomerular neurons, and centrifugal afferents. We compared the expansion of astroglial processes by quantifying GFAP-labeled areas in fed and fasted rats to see whether OB glomerular astrocytes are involved in the metabolic sensing and adaptation of the olfactory system. Glomerular astroglial spreading was much greater in all OB regions of rats fasted for 17 hr than in controls. Intra-peritoneal administration of the anorexigenic peptide PYY3-36 or glucose in 17 hr-fasted rats respectively decreased their food intake or restored their glycemia, and reversed the fasting-induced astroglial spreading. Direct application of the orexigenic peptides ghrelin or NPY to OB slices increased astroglial spreading, whereas PYY3-36 resulted in astroglial retraction, in agreement with the in vivo effects of fasting and satiety on glomerular astrocytes. Thus the morphological plasticity of OB glomerular astrocytes depends on the metabolic state of the rats and is influenced by peptides that regulate food intake. This plasticity may be part of the mechanism by which the olfactory system adapts to food intake.


Assuntos
Astrócitos/citologia , Astrócitos/fisiologia , Jejum/fisiologia , Plasticidade Neuronal/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Animais , Fármacos do Sistema Nervoso Central/administração & dosagem , Ingestão de Alimentos/fisiologia , Grelina/administração & dosagem , Grelina/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Glucose/administração & dosagem , Glucose/metabolismo , Índice Glicêmico , Masculino , Neuropeptídeo Y/administração & dosagem , Neuropeptídeo Y/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/metabolismo , Peptídeo YY/administração & dosagem , Peptídeo YY/metabolismo , Ratos Wistar , Técnicas de Cultura de Tecidos
2.
Cell Mol Life Sci ; 70(11): 2003-14, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23269438

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily and function as transcription factors that regulate gene expression in numerous biological processes. Although the PPARß/δ subtype is highly expressed in the brain, its physiological roles in neuronal function remain to be elucidated. In this study, we examined the presence of PPARß/δ in the master circadian clock of the Syrian hamster and investigated its putative functional role in this structure. In mammals, the central circadian clock, located in the suprachiasmatic nucleus (SCN), is entrained by the light-dark (LD) cycle via photic6 signals conveyed by a direct pathway whose terminals release glutamate. Using immunocytochemical and qRT-PCR analysis, we demonstrated that the rhythmic expression of PPAR ß/δ within the SCN of hamsters raised under an LD cycle was detectable only at the transcriptional level when the hamsters were maintained under constant darkness (DD). The increase in the number of immunoreactive PPARß/δ cells observed under DD after light stimulation during the early subjective night (CT14), but not during the subjective day (CT06), demonstrated that the expression of PPARß/δ can be up-regulated according to the photosensitive phase of the circadian clock. All of the PPARß/δ-positive cells in the SCN also expressed the glutamate receptor NMDAR1. Moreover, we demonstrated that at the photosensitive point (CT14), the administration of L-16504, a specific agonist of PPARß/δ, amplified the phase delay of the locomotor response induced by a light pulse. Taken together, these data suggest that PPARß/δ activation modulates glutamate release that mediates entrainment of the circadian clock by light.


Assuntos
Ácido Glutâmico/metabolismo , Transdução de Sinal Luminoso , PPAR delta/fisiologia , PPAR beta/fisiologia , Núcleo Supraquiasmático/metabolismo , Animais , Ritmo Circadiano , Cricetinae , Escuridão , Regulação da Expressão Gênica , Imuno-Histoquímica , Luz , Mesocricetus , PPAR delta/agonistas , PPAR delta/metabolismo , PPAR beta/agonistas , PPAR beta/metabolismo , Fenoxiacetatos/farmacologia , Fotoperíodo , Reação em Cadeia da Polimerase em Tempo Real , Núcleo Supraquiasmático/efeitos da radiação
3.
J Nutr ; 138(9): 1719-24, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18716175

RESUMO

Several studies suggest that (n-3) PUFA may play a role in the regulation of cognitive functions, locomotor and exploratory activity, and affective disorders. Additionally, (n-3) PUFA affect pineal function, which is implicated in the sleep-wake rhythm. However, no studies to our knowledge have explored the role of PUFA on the circadian system. We investigated the effect of an (n-3) PUFA-deficient diet on locomotor and pineal melatonin rhythms in Syrian hamsters used as model species in circadian rhythm research. To assess the possible relationship between voluntary wheel running activity and dopaminergic neurotransmission, we also measured endogenous monoamine concentrations in the striatum. Two-month-old male hamsters, fed either an (n-3) PUFA-deficient or an (n-3) PUFA-adequate diet, were housed individually in cages equipped with run wheels. At 3 mo, cerebral structures were extracted for biochemical and cellular analysis. In (n-3) PUFA-deficient hamsters, the induced changes in the pineal PUFA membrane phospholipid composition were associated with a reduction in the nocturnal peak level of melatonin that was 52% lower than in control hamsters (P < 0.001). The (n-3) PUFA-deficient hamsters also had higher diurnal (P < 0.01) and nocturnal (P = 0.001) locomotor activity than the control hamsters, in parallel with activation of striatal dopaminergic function (P < 0.05). The (n-3) PUFA-deficient hamsters exhibited several symptoms: chronic locomotor hyperactivity, disturbance in melatonin rhythm, and striatal hyperdopaminergia. We suggest that an (n-3) PUFA-deficient diet lessens the melatonin rhythm, weakens endogenous functioning of the circadian clock, and plays a role in nocturnal sleep disturbances as described in attention deficit/hyperactivity disorder.


Assuntos
Ritmo Circadiano/efeitos dos fármacos , Dopamina/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Melatonina/metabolismo , Atividade Motora/efeitos dos fármacos , Animais , Corpo Estriado/metabolismo , Cricetinae , Dieta , Gorduras Insaturadas na Dieta/farmacologia , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Insaturados/metabolismo , Feminino , Masculino , Mesocricetus , Glândula Pineal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA