Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Microbiol Spectr ; 11(6): e0291623, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37933982

RESUMO

IMPORTANCE: In this study, comprehensive analysis of 82,237 global porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2) open reading frame 5 sequences spanning from 1989 to 2021 refined PRRSV-2 genetic classification system, which defines 11 lineages and 21 sublineages and provides flexibility for growth if additional lineages, sublineages, or more granular classifications are needed in the future. Geographic distribution and temporal changes of PRRSV-2 were investigated in detail. This is a thorough study describing the molecular epidemiology of global PRRSV-2. In addition, the reference sequences based on the refined genetic classification system are made available to the public for future epidemiological and diagnostic applications worldwide. The data from this study will facilitate global standardization and application of PRRSV-2 genetic classification.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Filogenia , Variação Genética , Fases de Leitura Aberta
2.
Evol Appl ; 16(10): 1721-1734, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38020873

RESUMO

The United States (U.S.) swine industry has struggled to control porcine reproductive and respiratory syndrome (PRRS) for decades, yet the causative virus, PRRSV-2, continues to circulate and rapidly diverges into new variants. In the swine industry, the farm is typically the epidemiological unit for monitoring, prevention, and control; breaking transmission among farms is a critical step in containing disease spread. Despite this, our understanding of farm transmission still is inadequate, precluding the development of tailored control strategies. Therefore, our objective was to infer farm-to-farm transmission links, estimate farm-level transmissibility as defined by reproduction numbers (R), and identify associated risk factors for transmission using PRRSV-2 open reading frame 5 (ORF5) gene sequences, animal movement records, and other data from farms in a swine-dense region of the U.S. from 2014 to 2017. Timed phylogenetic and transmission tree analyses were performed on three sets of sequences (n = 206) from 144 farms that represented the three largest genetic variants of the virus in the study area. The length of inferred pig-to-pig infection chains that corresponded to pairs of farms connected via direct animal movement was used as a threshold value for identifying other feasible transmission links between farms; these links were then transformed into farm-to-farm transmission networks and calculated farm-level R-values. The median farm-level R was one (IQR = 1-2), whereas the R value of 28% of farms was more than one. Exponential random graph models were then used to evaluate the influence of farm attributes and/or farm relationships on the occurrence of farm-to-farm transmission links. These models showed that, even though most transmission events cannot be directly explained by animal movement, movement was strongly associated with transmission. This study demonstrates how integrative techniques may improve disease traceability in a data-rich era by providing a clearer picture of regional disease transmission.

3.
Viruses ; 15(9)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37766244

RESUMO

Describing PRRSV whole-genome viral diversity data over time within the host and within-farm is crucial for a better understanding of viral evolution and its implications. A cohort study was conducted at one naïve farrow-to-wean farm reporting a PRRSV outbreak. All piglets 3-5 days of age (DOA) born to mass-exposed sows through live virus inoculation with the recently introduced wild-type virus two weeks prior were sampled and followed up at 17-19 DOA. Samples from 127 piglets were individually tested for PRRSV by RT-PCR and 100 sequences were generated using Oxford Nanopore Technologies chemistry. Female piglets had significantly higher median Ct values than males (15.5 vs. 13.7, Kruskal-Wallis p < 0.001) at 3-5 DOA. A 52.8% mortality between sampling points was found, and the odds of dying by 17-19 DOA decreased with every one unit increase in Ct values at 3-5 DOA (OR = 0.76, 95% CI 0.61-0.94, p = 0.01). Although the within-pig percent nucleotide identity was overall high (99.7%) between 3-5 DOA and 17-19 DOA samples, ORFs 4 and 5a showed much lower identities (97.26% and 98.53%, respectively). When looking solely at ORF5, 62% of the sequences were identical to the 3-5 DOA consensus. Ten and eight regions showed increased nucleotide and amino acid genetic diversity, respectively, all found throughout ORFs 2a/2b, 4, 5a/5, 6, and 7.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Humanos , Masculino , Animais , Feminino , Suínos , Recém-Nascido , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Estudos de Coortes , Fazendas , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Nucleotídeos , Filogenia
4.
Pathogens ; 12(5)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37242410

RESUMO

The repeated emergence of new genetic variants of PRRSV-2, the virus that causes porcine reproductive and respiratory syndrome (PRRS), reflects its rapid evolution and the failure of previous control efforts. Understanding spatiotemporal heterogeneity in variant emergence and spread is critical for future outbreak prevention. Here, we investigate how the pace of evolution varies across time and space, identify the origins of sub-lineage emergence, and map the patterns of the inter-regional spread of PRRSV-2 Lineage 1 (L1)-the current dominant lineage in the U.S. We performed comparative phylogeographic analyses on subsets of 19,395 viral ORF5 sequences collected across the U.S. and Canada between 1991 and 2021. The discrete trait analysis of multiple spatiotemporally stratified sampled sets (n = 500 each) was used to infer the ancestral geographic region and dispersion of each sub-lineage. The robustness of the results was compared to that of other modeling methods and subsampling strategies. Generally, the spatial spread and population dynamics varied across sub-lineages, time, and space. The Upper Midwest was a main spreading hotspot for multiple sub-lineages, e.g., L1C and L1F, though one of the most recent emergence events (L1A(2)) spread outwards from the east. An understanding of historical patterns of emergence and spread can be used to strategize disease control and the containment of emerging variants.

6.
Vaccines (Basel) ; 10(12)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36560431

RESUMO

Glycosylation of proteins is a post-translational process where oligosaccharides are attached to proteins, potentially altering their folding, epitope availability, and immune recognition. In Porcine reproductive and respiratory syndrome virus-type 2 (PRRSV-2), positive selection pressure acts on amino acid sites potentially associated with immune escape through glycan shielding. Here, we describe the patterns of potential N-glycosylation sites over time and across different phylogenetic lineages of PRRSV-2 to better understand how these may contribute to patterns of coexistence and emergence of different lineages. We screened 19,179 PRRSV GP5 sequences (2004−2021) in silico for potential N-glycosylated sites. The emergence of novel combinations of N-glycosylated sites coincided with past PRRSV epidemics in the U.S. For lineage L1A, glycosylation at residues 32, 33, 44, 51, and 57 first appeared in 2012, but represented >62% of all L1A sequences by 2015, coinciding with the emergence of the L1A 1-7-4 strain that increased in prevalence from 8 to 86% of all L1A sequences from 2012 to 2015. The L1C 1-4-4 strain that emerged in 2020 also had a distinct N-glycosylation pattern (residues 32, 33, 44, and 51). From 2020 to 2021, this pattern was responsible for 44−47% of the L1C sequences, contrasting to <5% in years prior. Our findings support the hypothesis that antigenic evolution contributes to the sequential dominance of different PRRSV strains and that N-glycosylation patterns may partially account for antigenic differences amongst strains. Further studies on glycosylation and its effect on PRRSV GP5 folding are needed to further understand how glycosylation patterns shape PRRSV occurrence.

7.
Nat Ecol Evol ; 6(10): 1414-1422, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36138206

RESUMO

Potential interactions among co-circulating viral strains in host populations are often overlooked in the study of virus transmission. However, these interactions probably shape transmission dynamics by influencing host immune responses or altering the relative fitness among co-circulating strains. In this Review, we describe multi-strain dynamics from ecological and evolutionary perspectives, outline scales in which multi-strain dynamics occur and summarize important immunological, phylogenetic and mathematical modelling approaches used to quantify interactions among strains. We also discuss how host-pathogen interactions influence the co-circulation of pathogens. Finally, we highlight outstanding questions and knowledge gaps in the current theory and study of ecological and evolutionary dynamics of multi-strain viruses.


Assuntos
Evolução Biológica , Vírus de RNA , Interações Hospedeiro-Patógeno , Filogenia
8.
Front Vet Sci ; 9: 846904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35400102

RESUMO

While the widespread and endemic circulation of porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2) causes persistent economic losses to the U.S. swine industry, unusual increases of severe cases associated with the emergence of new genetic variants are a major source of concern for pork producers. Between 2020 and 2021, such an event occurred across pig production sites in the Midwestern U.S. The emerging viral clade is referred to as the novel sub-lineage 1C (L1C) 1-4-4 variant. This genetic classification is based on the open reading frame 5 (ORF5) gene. However, although whole genome sequence (WGS) suggested that this variant represented the emergence of a new strain, the true evolutionary history of this variant remains unclear. To better elucidate the variant's evolutionary history, we conducted a recombination detection analysis, time-scaled phylogenetic estimation, and discrete trait analysis on a set of L1C-1-4-4 WGSs (n = 19) alongside other publicly published WGSs (n = 232) collected over a 26-year period (1995-2021). Results from various methodologies consistently suggest that the novel L1C variant was a descendant of a recombinant ancestor characterized by recombination at the ORF1a gene between two segments that would be otherwise classified as L1C and L1A in the ORF5 gene. Based on analysis of different WGS fragments, the L1C-1-4-4 variant descended from an ancestor that existed around late 2018 to early 2019, with relatively high substitution rates in the proximal ORF1a as well as ORF5 regions. Two viruses from 2018 were found to be the closest relatives to the 2020-21 outbreak strain but had different recombination profiles, suggesting that these viruses were not direct ancestors. We also assessed the overall frequency of putative recombination amongst ORF5 and other parts of the genome and found that recombination events which leave detectable numbers of descendants are not common. However, the rapid spread and high virulence of the L1C-1-4-4 recombinant variant demonstrates that inter-sub-lineage recombination occasionally found amongst the U.S. PRRSV-2 might be an evolutionary mechanisms that contributed to this emergence. More generally, recombination amongst PRRSV-2 accelerates genetic change and increases the chance of the emergence of high fitness variants.

9.
Transbound Emerg Dis ; 69(2): 524-537, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33529439

RESUMO

Swine production in the United States is characterized by dynamic farm contacts through animal movements; such movements shape the risk of disease occurrence on farms. Pig movements have been linked to the spread of a virulent porcine reproductive and respiratory syndrome virus (PRRSV), RFLP type 1-7-4, herein denoted as phylogenetic sub-lineage 1A [L1A]. This study aimed to quantify the contribution of pig movements to the risk of L1A occurrence on farms in the United States. Farms were defined as L1A-positive in a given 6-month period if at least one L1A sequence was recovered from the farm. Temporal network autocorrelation modelling was performed using data on animal movements and 1,761 PRRSV ORF5 sequences linked to 494 farms from a dense pig production area in the United States between 2014 and 2017. A farm's current and past exposure to L1A and other PRRSV variants was assessed through its primary and secondary contacts in the animal movement network. Primary and secondary contacts with an L1A-positive farm increased the likelihood of L1A occurrence on a farm by 19% (p = .04) and 23% (p = .03), respectively. While the risk posed by primary contacts with PRRS-positive farms is unsurprising, the observation that secondary contacts also increase the likelihood of infection is novel. Risk of L1A occurrence on a farm also increased by 3.0% (p = .01) for every additional outgoing shipment, possibly due to biosecurity breaches during loading and transporting pigs from the farm. Finally, use of vaccines or field virus inoculation on sow farms one year prior reduced the risk of L1A occurrence in downstream farms by 36% (p = .04), suggesting that control measures that reduce viral circulation and enhance immunological protection in sow farms have a carry-over effect on L1A occurrence in downstream farms. Therefore, coordinated disease management interventions between farms connected via animal movements may be more effective than individual farm-based interventions.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Criação de Animais Domésticos , Animais , Fazendas , Feminino , Filogenia , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Estados Unidos/epidemiologia
10.
Front Vet Sci ; 8: 752938, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733906

RESUMO

We report an ongoing regional outbreak of an emerging porcine reproductive and respiratory syndrome virus (PRRSV2) variant within Lineage 1C affecting 154 breeding and grow-finishing sites in the Midwestern U.S. Transmission seemed to have occurred in two waves, with the first peak of weekly cases occurring between October and December 2020 and the second starting in April 2021. Most of cases occurred within a 120 km radius. Both orf5 and whole genome sequencing results suggest that this represents the emergence of a new variant within Lineage 1C distinct from what has been previously circulating. A case-control study was conducted with 50 cases (sites affected with the newly emerged variant) and 58 controls (sites affected with other PRRSV variants) between October and December 2020. Sites that had a market vehicle that was not exclusive to the production system had 0.04 times the odds of being a case than a control. A spatial cluster (81.42 km radius) with 1.68 times higher the number of cases than controls was found. The average finishing mortality within the first 4 weeks after detection was higher amongst cases (4.50%) than controls (0.01%). The transmission of a highly similar virus between different farms carrying on trough spring rises concerns for the next high transmission season of PRRS.

11.
Virus Evol ; 7(2): veab060, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532062

RESUMO

Viral sequence data coupled with phylodynamic models have become instrumental in investigating the outbreaks of human and animal diseases, and the incorporation of the hypothesized drivers of pathogen spread can enhance the interpretation from phylodynamic inference. Integrating animal movement data with phylodynamics allows us to quantify the extent to which the spatial diffusion of a pathogen is influenced by animal movements and contrast the relative importance of different types of movements in shaping pathogen distribution. We combine animal movement, spatial, and environmental data in a Bayesian phylodynamic framework to explain the spatial diffusion and evolutionary trends of a rapidly spreading sub-lineage (denoted L1A) of porcine reproductive and respiratory syndrome virus (PRRSV) Type 2 from 2014 to 2017. PRRSV is the most important endemic pathogen affecting pigs in the USA, and this particular virulent sub-lineage emerged in 2014 and continues to be the dominant lineage in the US swine industry to date. Data included 984 open reading frame 5 (ORF5) PRRSV L1A sequences obtained from two production systems in a swine-dense production region (∼85,000 mi2) in the USA between 2014 and 2017. The study area was divided into sectors for which model covariates were summarized, and animal movement data between each sector were summarized by age class (wean: 3-4 weeks; feeder: 8-25 weeks; breeding: ≥21 weeks). We implemented a discrete-space phylogeographic generalized linear model using Bayesian evolutionary analysis by sampling trees (BEAST) to infer factors associated with variability in between-sector diffusion rates of PRRSV L1A. We found that between-sector spread was enhanced by the movement of feeder pigs, spatial adjacency of sectors, and farm density in the destination sector. The PRRSV L1A strain was introduced in the study area in early 2013, and genetic diversity and effective population size peaked in 2015 before fluctuating seasonally (peaking during the summer months). Our study underscores the importance of animal movements and shows, for the first time, that the movement of feeder pigs (8-25 weeks old) shaped the spatial patterns of PRRSV spread much more strongly than the movements of other age classes of pigs. The inclusion of movement data into phylodynamic models as done in this analysis may enhance our ability to identify crucial pathways of disease spread that can be targeted to mitigate the spatial spread of infectious human and animal pathogens.

12.
Microbiol Resour Announc ; 10(33): e0026021, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34410155

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) continues to mutate, causing disruptive PRRS outbreaks in farms that lead to reproductive failure and respiratory disease-associated mortality. We present four new PRRSV type 2 variants in the United States belonging to four distinct orf5 sublineages within lineage 1.

13.
Vaccines (Basel) ; 9(6)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198904

RESUMO

The genetic diversity and frequent emergence of novel genetic variants of porcine reproductive and respiratory syndrome virus type-2 (PRRSV) hinders control efforts, yet drivers of macro-evolutionary patterns of PRRSV remain poorly documented. Utilizing a comprehensive database of >20,000 orf5 sequences, our objective was to classify variants according to the phylogenetic structure of PRRSV co-circulating in the U.S., quantify evolutionary dynamics of sub-lineage emergence, and describe potential antigenic differences among sub-lineages. We subdivided the most prevalent lineage (Lineage 1, accounting for approximately 60% of available sequences) into eight sub-lineages. Bayesian coalescent SkyGrid models were used to estimate each sub-lineage's effective population size over time. We show that a new sub-lineage emerged every 1 to 4 years and that the time between emergence and peak population size was 4.5 years on average (range: 2-8 years). A pattern of sequential dominance of different sub-lineages was identified, with a new dominant sub-lineage replacing its predecessor approximately every 3 years. Consensus amino acid sequences for each sub-lineage differed in key GP5 sites related to host immunity, suggesting that sub-lineage turnover may be linked to immune-mediated competition. This has important implications for understanding drivers of genetic diversity and emergence of new PRRSV variants in the U.S.

14.
Prev Vet Med ; 191: 105369, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33965745

RESUMO

As a consequence of multi-site pig production practiced in North America, frequent and widespread animal movements create extensive networks of interaction between farms. Social network analysis (SNA) has been used to understand disease transmission risks within these complex and dynamic production ecosystems and is particularly relevant for designing risk-based surveillance and control strategies targeting highly connected farms. However, inferences from SNA and the effectiveness of targeted strategies may be influenced by temporal changes in network structure. Since farm movements represent a temporally dynamic network, it is also unclear how many months of data are required to gain an accurate picture of an individual farm's connectivity pattern and the overall network structure. The extent to which shipments between two specific farms are repeated (i.e., "loyalty" of farm contacts) can influence the rate at which the structure of a network changes over time, which may influence disease dynamics. In this study, we aimed to describe temporal stability and loyalty patterns of pig movement networks in the U.S. swine industry. We analyzed a total of 282,807 animal movements among 2724 farms belonging to two production systems between 2014 and 2017. Loyalty trends were largely driven by contacts between sow farms and nurseries and between nurseries and finisher farms; mean loyalty (percent of contacts that were repeated at least once within a 52-week interval) of farm contacts was 51-60 % for farm contacts involving weaned pigs, and 12-22% for contacts involving feeder pigs. A cyclic pattern was observed for both weaned and feeder pig movements, with episodes of increased loyalty observed at intervals of 8 and 17-20 weeks, respectively. Network stability was achieved when six months of data were aggregated, and only small shifts in node-level and global network metrics were observed when adding more data. This stability is relevant for designing targeted surveillance programs for disease management, given that movements summarized over too short a period may lead to stochastic swings in network metrics. A temporal resolution of six months would be reliable for the identification of potential super-spreaders in a network for targeted intervention and disease control. The temporal stability observed in these networks suggests that identifying highly connected farms in retrospective network data (up to 24 months) is reliable for future planning, albeit with reduced effectiveness.

15.
Prev Vet Med ; 178: 104977, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32279002

RESUMO

Analyses of livestock movement networks has become key to understanding an industry's vulnerability to infectious disease spread and for identifying farms that play disproportionate roles in pathogen dissemination. In addition to animal movements, many pathogens can spread between farms via mechanisms mediated by spatial proximity. Heterogeneities in contact patterns based on spatial proximity are less commonly considered in network studies, and studies that jointly consider spatial connectivity and animal movement are rare. The objective of this study was to determine the extent to which movement versus spatial proximity networks determine the distribution of an economically important endemic virus, porcine reproductive and respiratory syndrome virus (PRRSV), within a swine-dense region of the U.S. PRRSV can be classified into numerous phylogenetic lineages. Such data can be used to better resolve between-farm infection chains and elucidate types of contact most associated with transmission. Here, we construct movement and spatial proximity networks; farms within the networks were classified as cases if a given PRRSV lineage had been recovered at least once in a year for each of three years analyzed. We evaluated six lineages and sub-lineages across three years, and evaluated the epidemiological relevance of each network by applying network k-tests to statistically evaluate whether the pattern of case occurrence within the network was consistent with transmission via network linkages. Our results indicated that animal movements, not local area spread, play a dominant role in shaping transmission pathways, though there were differences amongst lineages. The median number of case farms inter-linked via animal movements was approximately 4.1x higher than random expectations (range: 1.7-13.7; p < 0.05, network k-test), whereas this measure was only 2.7x higher than random expectations for farms linked via spatial proximity (range: 1.3-5.4; p < 0.05, network k-test). For spatial proximity networks, contact based on proximities of <5 km appeared to have greater epidemiological relevance than longer distances, likely related to diminishing probabilities of local area spread at greater distances. However, the greater overall levels of connectivity of the spatial network compared to the movement network highlights the vulnerability of pig populations to widespread transmission via this route. By combining genetic data with network analysis, this research advances our understanding of dynamics of between-farm spread of PRRSV, helps establish the relative importance of transmission via animal movements versus local area spread, and highlights the potential for targeted control strategies based upon heterogeneities in network connectivity.


Assuntos
Criação de Animais Domésticos , Síndrome Respiratória e Reprodutiva Suína/transmissão , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Análise Espacial , Meios de Transporte , Animais , Movimento , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Sus scrofa , Suínos , Estados Unidos
16.
PLoS Negl Trop Dis ; 13(5): e0007405, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31145746

RESUMO

BACKGROUND: Rickettsia bacteria are responsible for diseases in humans and animals around the world, however few details are available regarding its ecology and circulation among wild animals and human populations at high transmission risk in Brazil. The aim of this study was to investigate the occurrence of ticks and Rickettsia spp. in wild boars, corresponding hunting dogs and hunters. METHODS: Serum samples and ticks were collected from 80 free-range wild boars, 170 hunting dogs and 34 hunters from southern and central-western Brazil, from the Atlantic Forest and Cerrado biomes, respectively, between 2016 and 2018. Serum samples were tested by indirect immunofluorescent-antibody assay (IFA) to detect IgG antibodies against Rickettsia rickettsii, Rickettsia parkeri, Rickettsia bellii, Rickettsia rhipicephali and Rickettsia amblyommatis. Tick species were identified by morphological taxonomic keys, as previously described. A total of 164 ticks including A. sculptum, A. brasiliense and A. aureolatum were tested in PCR assays for Spotted Fever Group (SFG) Rickettsia spp. RESULTS: A total of 58/80 (72.5%) wild boars, 24/170 (14.1%) hunting dogs and 5/34 (14.7%) hunters were positive (titers ≥ 64) to at least one Rickettsia species. A total of 669/1,584 (42.2%) ticks from wild boars were identified as Amblyomma sculptum, 910/1,584 (57.4%) as Amblyomma brasiliense, 4/1,584(0.24%) larvae of Amblyomma spp. and 1/1,584 (0.06%) nymph as Amblyolmma dubitatum. All 9 ticks found on hunting dogs were identified as Amblyomma aureolatum and all 22 ticks on hunters as A. sculptum. No tested tick was positive by standard PCR to SFG Rickettsia spp. CONCLUSIONS: The present study was the concomitant report of wild boar, hunting dog and hunter exposure to SFG rickettsiae agents, performed in two different Brazilian biomes. Wild boar hunting may increase the risk of human exposure and consequently tick-borne disease Wild boars may be carrying and spreading capybara ticks from their original habitats to other ecosystems. Further studies can be required to explore the ability of wild boars to infecting ticks and be part of transmission cycle of Rickettsia spp.


Assuntos
Anticorpos Antibacterianos/sangue , Doenças do Cão/sangue , Cães/sangue , Infecções por Rickettsia/sangue , Infecções por Rickettsia/veterinária , Rickettsia/imunologia , Doenças dos Suínos/sangue , Carrapatos/imunologia , Animais , Animais Selvagens/sangue , Animais Selvagens/microbiologia , Brasil , Doenças do Cão/microbiologia , Cães/microbiologia , Feminino , Humanos , Masculino , Rickettsia/classificação , Rickettsia/isolamento & purificação , Infecções por Rickettsia/microbiologia , Sus scrofa/sangue , Sus scrofa/microbiologia , Suínos , Doenças dos Suínos/microbiologia , Carrapatos/classificação , Carrapatos/microbiologia
17.
PLoS One ; 14(3): e0213301, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30840708

RESUMO

BACKGROUND: Rapid diagnosis tests (RDTs) are easy to carry out, provide fast results, and could potentially guide medical treatment decisions. We investigated the performance of a commercially available RDT, which simultaneously detects the non-structural 1 (NS1) dengue virus (DENV) antigen, and IgM and IgG DENV antibodies, using representative serum samples from individuals in a dengue endemic area in Salvador, Brazil. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the accuracy of the SD BIOLINE Dengue Duo RDT (Abbott, Santa Clara, USA; former Alere Inc, Waltham, USA) in a random collection of sera. Samples included acute-phase sera from 246 laboratory-confirmed dengue cases and 108 non-dengue febrile patients enrolled in a surveillance study for dengue detection, 73 healthy controls living in the same surveillance community, and 73 blood donors. RDT accuracy was blindly assessed based on the combined results for the NS1 and the IgM test components. The RDT sensitivity was 46.8% (38.6% for the NS1 component and 13.8% for the IgM component). Sensitivity was greater for samples obtained from patients with secondary DENV infections (49.8%) compared to primary infections (31.1%) (P: 0.02) and was also influenced by the result in the confirmatory dengue diagnostic test, ranging from 39.7% for samples of cases confirmed by IgM-ELISA seroconversion between paired samples to 90.4% for samples of cases confirmed by a positive NS1-ELISA. The RDT specificity was 94.4% for non-dengue febrile patients, 87.7% for the community healthy controls, and 95.9% for the blood donors. CONCLUSIONS/SIGNIFICANCE: The SD BIOLINE Dengue Duo RDT showed good specificities, but low sensitivity, suggesting that it may be more useful to rule in than to rule out a dengue diagnosis in dengue endemic regions.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Dengue/imunologia , Dengue/diagnóstico , Dengue/imunologia , Sistemas Automatizados de Assistência Junto ao Leito , Kit de Reagentes para Diagnóstico/estatística & dados numéricos , Proteínas não Estruturais Virais/imunologia , Adolescente , Adulto , Idoso , Anticorpos Antivirais/imunologia , Brasil/epidemiologia , Estudos de Casos e Controles , Criança , Dengue/epidemiologia , Feminino , Seguimentos , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Curva ROC , Adulto Jovem
18.
Clin Infect Dis ; 69(8): 1353-1359, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30561554

RESUMO

BACKGROUND: Since their emergence in the Americas, chikungunya (CHIKV) and Zika (ZIKV) viruses co-circulate with dengue virus (DENV), hampering clinical diagnosis. We investigated clinical and epidemiological characteristics of arboviral infections during the introduction and spread of CHIKV and ZIKV through northeastern Brazil. METHODS: Surveillance for arboviral diseases among febrile patients was performed at an emergency health unit of Salvador, Brazil, between September 2014 and July 2016. We interviewed patients to collect data on symptoms, reviewed medical records to obtain the presumptive diagnoses, and performed molecular and serological testing to confirm DENV, CHIKV, ZIKV, or nonspecific flavivirus (FLAV) diagnosis. RESULTS: Of 948 participants, 247 (26.1%) had an acute infection, of which 224 (23.6%) were single infections (DENV, 32 [3.4%]; CHIKV, 159 [16.7%]; ZIKV, 13 [1.4%]; and FLAV, 20 [2.1%]) and 23 (2.4%) coinfections (DENV/CHIKV, 13 [1.4%]; CHIKV/FLAV, 9 [0.9%]; and DENV/ZIKV, 1 [0.1%]). An additional 133 (14.0%) patients had serological evidence for a recent arboviral infection. Patients with ZIKV presented with rash and pruritus (69.2% each) more frequently than those with DENV (37.5% and 31.2%, respectively) and CHIKV (22.9% and 14.7%, respectively) (P < .001 for both comparisons). Conversely, arthralgia was more common in CHIKV (94.9%) and FLAV/CHIKV (100.0%) than in DENV (59.4%) and ZIKV (53.8%) (P < .001). A correct presumptive clinical diagnosis was made for 9%-23% of the confirmed patients. CONCLUSIONS: Arboviral infections are frequent causes of febrile illness. Coinfections are not rare events during periods of intense, concomitant arboviral transmission. Given the challenge to clinically distinguish these infections, there is an urgent need for rapid, point-of-care, multiplex diagnostics.


Assuntos
Febre de Chikungunya/transmissão , Vírus Chikungunya/fisiologia , Vírus da Dengue/fisiologia , Dengue/transmissão , Infecção por Zika virus/transmissão , Zika virus/fisiologia , Adolescente , Adulto , Brasil/epidemiologia , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Coinfecção , Dengue/epidemiologia , Dengue/virologia , Monitoramento Epidemiológico , Feminino , Febre , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/virologia
19.
Euro Surveill ; 23(45)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30424827

RESUMO

BackgroundNorth-eastern Brazil was the region most affected by the outbreak of congenital Zika syndrome that followed the 2015 Zika virus (ZIKV) epidemics, with thousands of suspected microcephaly cases reported to the health authorities, mostly between late 2015 and early 2016. Aim: To describe clinical and epidemiological aspects of the outbreak of congenital brain abnormalities (CBAs) and to evaluate the accuracy of different head circumference screening criteria in predicting CBAs.MethodBetween April 2015 and July 2016, the Centers for Information and Epidemiologic Surveillance of Salvador, Brazil investigated the reported cases suspected of microcephaly and, based on intracranial imaging studies, confirmed or excluded a diagnosis of CBA. Sensitivity, specificity and positive and negative predictive values of different head circumference screening criteria in predicting CBAs were calculated.ResultsOf the 365 investigated cases, 166 (45.5%) had confirmed CBAs. The most common findings were intracranial calcifications and ventriculomegaly in 143 (86.1%) and 111 (66.9%) of the 166 CBA cases, respectively. Prevalence of CBAs peaked in December 2015 (2.24 cases/100 live births). Cases of CBAs were significantly more likely to have been born preterm and to mothers who had clinical manifestations of arboviral infection during pregnancy. None of the head circumference screening criteria performed optimally in predicting CBAs.ConclusionThis study highlights the magnitude of neurological consequences of the ZIKV epidemic and the limitations of head circumference in accurately identifying children with CBA. Gestational symptoms compatible with ZIKV infection should be combined with imaging studies for efficient detection of suspect CBAs during ZIKV epidemics.


Assuntos
Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Surtos de Doenças/estatística & dados numéricos , Notificação de Abuso , Microcefalia/virologia , Complicações Infecciosas na Gravidez/virologia , Infecção por Zika virus/congênito , Zika virus/isolamento & purificação , Anormalidades Múltiplas/etiologia , Encéfalo/virologia , Brasil/epidemiologia , Calcinose/diagnóstico por imagem , Epidemias , Feminino , Idade Gestacional , Humanos , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/epidemiologia , Lactente , Recém-Nascido , Microcefalia/diagnóstico por imagem , Mães , Neuroimagem , Gravidez , Complicações Infecciosas na Gravidez/epidemiologia , Prevalência , Infecção por Zika virus/epidemiologia
20.
Virol J ; 15(1): 108, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005683

RESUMO

BACKGROUND: Serologic detection of Zika virus (ZIKV) infections is challenging because of antigenic similarities among flaviviruses. OBJECTIVE: To evaluate the sensitivity and specificity of commercial ZIKV IgM and IgG enzyme-linked immunoassay (ELISA) kits. METHODS: We used sera from febrile patients with RT-PCR-confirmed ZIKV infection to determine sensitivity and sera from RT-PCR-confirmed dengue cases and blood donors, both of which were collected before ZIKV epidemics in Brazil (2009-2011 and 2013, respectively) to determine specificity. RESULTS: The ZIKV IgM-ELISA positivity among RT-PCR ZIKV confirmed cases was 0.0% (0/14) and 12.5% (1/8) for acute- and convalescent-phase sera, respectively, while its specificity was 100.0% (58/58) and 98.3% (58/59) for acute- and convalescent-phase sera of dengue patients, and 100.0% (23/23) for blood donors. The ZIKV IgG-ELISA sensitivity was 100.0% (6/6) on convalescent-phase sera from RT-PCR confirmed ZIKV patients, while its specificity was 27.3% (15/55) on convalescent-phase sera from dengue patients and 45.0% (9/20) on blood donors' sera. The ZIKV IgG-ELISA specificity among dengue confirmed cases was much greater among patients with primary dengue (92.3%; 12/13), compared to secondary dengue (7.1%; 3/42). CONCLUSIONS: In a setting of endemic dengue transmission, the ZIKV IgM-ELISA had high specificity, but poor sensitivity. In contrast, the ZIKV IgG-ELISA showed low specificity, particularly for patients previously exposed to dengue infections. This suggests that this ZIKV IgM-ELISA is not useful in confirming a diagnosis of ZIKV infection in suspected patients, whereas the IgG-ELISA is more suitable for ZIKV diagnosis among travelers, who reside in areas free of flavivirus transmission, rather than for serosurveys in dengue-endemic areas.


Assuntos
Ensaio de Imunoadsorção Enzimática , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/imunologia , Zika virus/imunologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Adulto Jovem , Zika virus/genética , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA