Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Huntingtons Dis ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38788082

RESUMO

 Neuroimaging is increasingly being included in clinical trials of Huntington's disease (HD) for a wide range of purposes from participant selection and safety monitoring, through to demonstration of disease modification. Selection of the appropriate modality and associated analysis tools requires careful consideration. On behalf of the EHDN Imaging Working Group, we present current opinion on the utility and future prospects for inclusion of neuroimaging in HD trials. Covering the key imaging modalities of structural-, functional- and diffusion- MRI, perfusion imaging, positron emission tomography, magnetic resonance spectroscopy, and magnetoencephalography, we address how neuroimaging can be used in HD trials to: 1) Aid patient selection, enrichment, stratification, and safety monitoring; 2) Demonstrate biodistribution, target engagement, and pharmacodynamics; 3) Provide evidence for disease modification; and 4) Understand brain re-organization following therapy. We also present the challenges of translating research methodology into clinical trial settings, including equipment requirements and cost, standardization of acquisition and analysis, patient burden and invasiveness, and interpretation of results. We conclude, that with appropriate consideration of modality, study design and analysis, imaging has huge potential to facilitate effective clinical trials in HD.

2.
Brain Behav ; 13(4): e2940, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36917716

RESUMO

BACKGROUND: Whole-brain longitudinal diffusion studies are crucial to examine changes in structural connectivity in neurodegeneration. Here, we investigated the longitudinal alterations in white matter (WM) microstructure across the timecourse of Huntington's disease (HD). METHODS: We examined changes in WM microstructure from premanifest to early manifest disease, using data from two cohorts with different disease burden. The TrackOn-HD study included 67 controls, 67 premanifest, and 10 early manifest HD (baseline and 24-month data); the PADDINGTON study included 33 controls and 49 early manifest HD (baseline and 15-month data). Longitudinal changes in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity, and radial diffusivity from baseline to last study visit were investigated for each cohort using tract-based spatial statistics. An optimized pipeline was employed to generate participant-specific templates to which diffusion tensor imaging maps were registered and change maps were calculated. We examined longitudinal differences between HD expansion-carriers and controls, and correlations with clinical scores, including the composite UHDRS (cUHDRS). RESULTS: HD expansion-carriers from TrackOn-HD, with lower disease burden, showed a significant longitudinal decline in FA in the left superior longitudinal fasciculus and an increase in MD across subcortical WM tracts compared to controls, while in manifest HD participants from PADDINGTON, there were significant widespread longitudinal increases in diffusivity compared to controls. Baseline scores in clinical scales including the cUHDRS predicted WM microstructural change in HD expansion-carriers. CONCLUSION: The present study showed significant longitudinal changes in WM microstructure across the HD timecourse. Changes were evident in larger WM areas and across more metrics as the disease advanced, suggesting a progressive alteration of WM microstructure with disease evolution.


Assuntos
Doença de Huntington , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Doença de Huntington/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos
3.
Brain Commun ; 4(6): fcac279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36519153

RESUMO

An important step towards the development of treatments for cognitive impairment in ageing and neurodegenerative diseases is to identify genetic and environmental modifiers of cognitive function and understand the mechanism by which they exert an effect. In Huntington's disease, the most common autosomal dominant dementia, a small number of studies have identified intellectual enrichment, i.e. a cognitively stimulating lifestyle and genetic polymorphisms as potential modifiers of cognitive function. The aim of our study was to further investigate the relationship and interaction between genetic factors and intellectual enrichment on cognitive function and brain atrophy in Huntington's disease. For this purpose, we analysed data from Track-HD, a multi-centre longitudinal study in Huntington's disease gene carriers and focused on the role of intellectual enrichment (estimated at baseline) and the genes FAN1, MSH3, BDNF, COMT and MAPT in predicting cognitive decline and brain atrophy. We found that carrying the 3a allele in the MSH3 gene had a positive effect on global cognitive function and brain atrophy in multiple cortical regions, such that 3a allele carriers had a slower rate of cognitive decline and atrophy compared with non-carriers, in agreement with its role in somatic instability. No other genetic predictor had a significant effect on cognitive function and the effect of MSH3 was independent of intellectual enrichment. Intellectual enrichment also had a positive effect on cognitive function; participants with higher intellectual enrichment, i.e. those who were better educated, had higher verbal intelligence and performed an occupation that was intellectually engaging, had better cognitive function overall, in agreement with previous studies in Huntington's disease and other dementias. We also found that intellectual enrichment interacted with the BDNF gene, such that the positive effect of intellectual enrichment was greater in Met66 allele carriers than non-carriers. A similar relationship was also identified for changes in whole brain and caudate volume; the positive effect of intellectual enrichment was greater for Met66 allele carriers, rather than for non-carriers. In summary, our study provides additional evidence for the beneficial role of intellectual enrichment and carrying the 3a allele in MSH3 in cognitive function in Huntington's disease and their effect on brain structure.

4.
PLoS One ; 17(11): e0269649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36410013

RESUMO

INTRODUCTION: Drug development for neurodegenerative diseases such as Friedreich's ataxia (FRDA) is limited by a lack of validated, sensitive biomarkers of pharmacodynamic response in affected tissue and disease progression. Studies employing neuroimaging measures to track FRDA have thus far been limited by their small sample sizes and limited follow up. TRACK-FA, a longitudinal, multi-site, and multi-modal neuroimaging natural history study, aims to address these shortcomings by enabling better understanding of underlying pathology and identifying sensitive, clinical trial ready, neuroimaging biomarkers for FRDA. METHODS: 200 individuals with FRDA and 104 control participants will be recruited across seven international study sites. Inclusion criteria for participants with genetically confirmed FRDA involves, age of disease onset ≤ 25 years, Friedreich's Ataxia Rating Scale (FARS) functional staging score of ≤ 5, and a total modified FARS (mFARS) score of ≤ 65 upon enrolment. The control cohort is matched to the FRDA cohort for age, sex, handedness, and years of education. Participants will be evaluated at three study visits over two years. Each visit comprises of a harmonized multimodal Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) scan of the brain and spinal cord; clinical, cognitive, mood and speech assessments and collection of a blood sample. Primary outcome measures, informed by previous neuroimaging studies, include measures of: spinal cord and brain morphometry, spinal cord and brain microstructure (measured using diffusion MRI), brain iron accumulation (using Quantitative Susceptibility Mapping) and spinal cord biochemistry (using MRS). Secondary and exploratory outcome measures include clinical, cognitive assessments and blood biomarkers. DISCUSSION: Prioritising immediate areas of need, TRACK-FA aims to deliver a set of sensitive, clinical trial-ready neuroimaging biomarkers to accelerate drug discovery efforts and better understand disease trajectory. Once validated, these potential pharmacodynamic biomarkers can be used to measure the efficacy of new therapeutics in forestalling disease progression. CLINICAL TRIAL REGISTRATION: ClinicalTrails.gov Identifier: NCT04349514.


Assuntos
Ataxia de Friedreich , Adulto , Humanos , Biomarcadores , Encéfalo/patologia , Progressão da Doença , Ataxia de Friedreich/patologia , Espectroscopia de Ressonância Magnética
5.
Brain ; 145(11): 3953-3967, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35758263

RESUMO

Upregulation of functional network connectivity in the presence of structural degeneration is seen in the premanifest stages of Huntington's disease (preHD) 10-15 years from clinical diagnosis. However, whether widespread network connectivity changes are seen in gene carriers much further from onset has yet to be explored. We characterized functional network connectivity throughout the brain and related it to a measure of disease pathology burden (CSF neurofilament light, NfL) and measures of structural connectivity in asymptomatic gene carriers, on average 24 years from onset. We related these measurements to estimates of cortical and subcortical gene expression. We found no overall differences in functional (or structural) connectivity anywhere in the brain comparing control and preHD participants. However, increased functional connectivity, particularly between posterior cortical areas, correlated with increasing CSF NfL level in preHD participants. Using the Allen Human Brain Atlas and expression-weighted cell-type enrichment analysis, we demonstrated that this functional connectivity upregulation occurred in cortical regions associated with regional expression of genes specific to neuronal cells. This relationship was validated using single-nucleus RNAseq data from post-mortem Huntington's disease and control brains showing enrichment of neuronal-specific genes that are differentially expressed in Huntington's disease. Functional brain networks in asymptomatic preHD gene carriers very far from disease onset show evidence of upregulated connectivity correlating with increased disease burden. These changes occur among brain areas that show regional expression of genes specific to neuronal GABAergic and glutamatergic cells.


Assuntos
Doença de Huntington , Adulto , Humanos , Doença de Huntington/patologia , Filamentos Intermediários , Imageamento por Ressonância Magnética , Mapeamento Encefálico , Encéfalo/patologia
6.
Neuroimage Clin ; 33: 102927, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34999565

RESUMO

OBJECTIVES: To investigate the timeframe prior to symptom onset when cortico-basal ganglia white matter (white matter) loss begins in premanifest Huntington's disease (preHD), and which striatal and thalamic sub-region white matter tracts are most vulnerable. METHODS: We performed fixel-based analysis, which allows resolution of crossing white matter fibres at the voxel level, on diffusion tractography derived white matter tracts of striatal and thalamic sub-regions in two independent cohorts; TrackON-HD, which included 72 preHD (approx. 11 years before disease onset) and 85 controls imaged at three time points over two years; and the HD young adult study (HD-YAS), which included 54 preHD (approx. 25 years before disease onset) and 53 controls, imaged at one time point. Group differences in fibre density and cross section (FDC) were investigated. RESULTS: We found no significant group differences in cortico-basal ganglia sub-region FDC in preHD gene carriers 25 years before onset. In gene carriers 11 years before onset, there were reductions in striatal (limbic and caudal motor) and thalamic (premotor, motor and sensory) FDC at baseline, with no significant change over 2 years. Caudal motor-striatal, pre-motor-thalamic, and primary motor-thalamic FDC at baseline, showed significant correlations with the Unified Huntington's disease rating scale (UHDRS) total motor score (TMS). Limbic cortico-striatal FDC and apathy were also significantly correlated. CONCLUSIONS: Our findings suggest that limbic and motor white matter tracts to the striatum and thalamus are most susceptible to early degeneration in HD but that approximately 25 years from onset, these tracts appear preserved. These findings may have importance in determining the optimum time to initiate future disease modifying therapies in HD.


Assuntos
Doença de Huntington , Substância Branca , Gânglios da Base/diagnóstico por imagem , Encéfalo , Imagem de Tensor de Difusão , Humanos , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/genética , Substância Branca/diagnóstico por imagem , Adulto Jovem
7.
Hum Brain Mapp ; 42(15): 4996-5009, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34272784

RESUMO

Ultra-high field MRI across the depth of the cortex has the potential to provide anatomically precise biomarkers and mechanistic insights into neurodegenerative disease like Huntington's disease that show layer-selective vulnerability. Here we compare multi-parametric mapping (MPM) measures across cortical depths for a 7T 500 µm whole brain acquisition to (a) layer-specific cell measures from the von Economo histology atlas, (b) layer-specific gene expression, using the Allen Human Brain atlas and (c) white matter connections using high-fidelity diffusion tractography, at a 1.3 mm isotropic voxel resolution, from a 300mT/m Connectom MRI system. We show that R2*, but not R1, across cortical depths is highly correlated with layer-specific cell number and layer-specific gene expression. R1- and R2*-weighted connectivity strength of cortico-striatal and intra-hemispheric cortical white matter connections was highly correlated with grey matter R1 and R2* across cortical depths. Limitations of the layer-specific relationships demonstrated are at least in part related to the high cross-correlations of von Economo atlas cell counts and layer-specific gene expression across cortical layers. These findings demonstrate the potential and limitations of combining 7T MPMs, gene expression and white matter connections to provide an anatomically precise framework for tracking neurodegenerative disease.


Assuntos
Córtex Cerebral , Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Expressão Gênica/fisiologia , Bainha de Mielina , Rede Nervosa , Substância Branca , Adulto , Atlas como Assunto , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Masculino , Rede Nervosa/anatomia & histologia , Rede Nervosa/diagnóstico por imagem , Doenças Neurodegenerativas/diagnóstico por imagem , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Adulto Jovem
8.
Neuroimage ; 237: 118207, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048901

RESUMO

Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success. Here, for the first time, we employed a big data machine learning approach to investigate the influence of 20 different design-specific (e.g. activity vs. connectivity feedback), region of interest-specific (e.g. cortical vs. subcortical) and subject-specific factors (e.g. age) on neurofeedback performance and improvement in 608 participants from 28 independent experiments. With a classification accuracy of 60% (considerably different from chance level), we identified two factors that significantly influenced neurofeedback performance: Both the inclusion of a pre-training no-feedback run before neurofeedback training and neurofeedback training of patients as compared to healthy participants were associated with better neurofeedback performance. The positive effect of pre-training no-feedback runs on neurofeedback performance might be due to the familiarization of participants with the neurofeedback setup and the mental imagery task before neurofeedback training runs. Better performance of patients as compared to healthy participants might be driven by higher motivation of patients, higher ranges for the regulation of dysfunctional brain signals, or a more extensive piloting of clinical experimental paradigms. Due to the large heterogeneity of our dataset, these findings likely generalize across neurofeedback studies, thus providing guidance for designing more efficient neurofeedback studies specifically for improving clinical neurofeedback-based interventions. To facilitate the development of data-driven recommendations for specific design details and subpopulations the field would benefit from stronger engagement in open science research practices and data sharing.


Assuntos
Neuroimagem Funcional , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Neurorretroalimentação , Adulto , Humanos
9.
Artigo em Inglês | MEDLINE | ID: mdl-33795209

RESUMO

BACKGROUND: In this study, we asked whether differences in striatal activity during a reinforcement learning (RL) task with gain and loss domains could be one of the earliest functional imaging features associated with carrying the Huntington's disease (HD) gene. Based on previous work, we hypothesized that HD gene carriers would show either neural or behavioral asymmetry between gain and loss learning. METHODS: We recruited 35 HD gene carriers, expected to demonstrate onset of motor symptoms in an average of 26 years, and 35 well-matched gene-negative control subjects. Participants were placed in a functional magnetic resonance imaging scanner, where they completed an RL task in which they were required to learn to choose between abstract stimuli with the aim of gaining rewards and avoiding losses. Task behavior was modeled using an RL model, and variables from this model were used to probe functional magnetic resonance imaging data. RESULTS: In comparison with well-matched control subjects, gene carriers more than 25 years from motor onset showed exaggerated striatal responses to gain-predicting stimuli compared with loss-predicting stimuli (p = .002) in our RL task. Using computational analysis, we also found group differences in striatal representation of stimulus value (p = .0004). We found no group differences in behavior, cognitive scores, or caudate volumes. CONCLUSIONS: Behaviorally, gene carriers 9 years from predicted onset have been shown to learn better from gains than from losses. Our data suggest that a window exists in which HD-related functional neural changes are detectable long before associated behavioral change and 25 years before predicted motor onset. These represent the earliest functional imaging differences between HD gene carriers and control subjects.


Assuntos
Doença de Huntington , Corpo Estriado , Humanos , Doença de Huntington/genética , Imageamento por Ressonância Magnética , Recompensa
10.
EBioMedicine ; 65: 103266, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33706250

RESUMO

BACKGROUND: Pathological processes in Huntington's disease (HD) begin many years prior to symptom onset. Recently we demonstrated that in a premanifest cohort approximately 24 years from predicted disease onset, despite intact function, there was evidence of subtle neurodegeneration. Here, we use novel imaging techniques to determine whether macro- and micro-structural changes can be detected across the whole-brain in the same cohort. METHODS: 62 premanifest HD (PreHD) and 61 controls from the HD Young Adult Study (HD-YAS) were included. Grey and white matter volume, diffusion weighted imaging (DWI) measures of white matter microstructure, multiparametric maps (MPM) estimating myelin and iron content from magnetization transfer (MT), proton density (PD), longitudinal relaxation (R1) and effective transverse relaxation (R2*), and myelin g-ratio were examined. Group differences between PreHD and controls were assessed; associations between all imaging metrics and disease burden and CSF neurofilament light (NfL) were also performed. Volumetric and MPM results were corrected at a cluster-wise value of familywise error (FWE) 0.05. Diffusion and g-ratio results were corrected via threshold-free cluster enhancement at FWE 0.05. FINDINGS: We showed significantly increased R1 and R2*, suggestive of increased iron, in the putamen, globus pallidum and external capsule of PreHD participants. There was also a significant association between lower cortical R2*, suggestive of reduced myelin or iron, and higher CSF NfL in the frontal lobe and the parieto-occipital cortices. No other results were significant at corrected levels. INTERPRETATION: Increased iron in subcortical structures and the surrounding white matter is a feature of very early PreHD. Furthermore, increases in CSF NfL were linked to microstructural changes in the posterior parietal-occipital cortex, a region previously shown to undergo some of the earliest cortical changes in HD. These findings suggest that disease related process are occurring in both subcortical and cortical regions more than 20 years from predicted disease onset.


Assuntos
Doença de Huntington/patologia , Ferro/metabolismo , Bainha de Mielina/metabolismo , Adulto , Estudos de Casos e Controles , Estudos Transversais , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/ultraestrutura , Humanos , Doença de Huntington/metabolismo , Transtornos de Início Tardio , Imageamento por Ressonância Magnética , Masculino , Substância Branca/diagnóstico por imagem , Substância Branca/ultraestrutura , Adulto Jovem
11.
J Neurol Neurosurg Psychiatry ; 92(2): 143-149, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33130575

RESUMO

OBJECTIVES: Cognitive flexibility, which is key for adaptive decision-making, engages prefrontal cortex (PFC)-striatal circuitry and is impaired in both manifest and premanifest Huntington's disease (pre-HD). The aim of this study was to examine cognitive flexibility in a far from onset pre-HD cohort to determine whether an early impairment exists and if so, whether fronto-striatal circuits were associated with this deficit. METHODS: In the present study, we examined performance of 51 pre-HD participants (mean age=29.22 (SD=5.71) years) from the HD Young Adult Study cohort and 53 controls matched for age, sex and IQ, on the Cambridge Neuropsychological Test Automated Battery (CANTAB) Intra-Extra Dimensional Set-Shift (IED) task. This cohort is unique as it is the furthest from disease onset comprehensively studied to date (mean years=23.89 (SD=5.96) years). The IED task measures visual discrimination learning, cognitive flexibility and specifically attentional set-shifting. We used resting-state functional MRI to examine whether the functional connectivity between specific fronto-striatal circuits was dysfunctional in pre-HD, compared with controls, and whether these circuits were associated with performance on the critical extradimensional shift stage. RESULTS: Our results demonstrated that the CANTAB IED task detects a mild early impairment in cognitive flexibility in a pre-HD group far from onset. Attentional set-shifting was significantly related to functional connectivity between the ventrolateral PFC and ventral striatum in healthy controls and to functional connectivity between the dorsolateral PFC and caudate in pre-HD participants. CONCLUSION: We postulate that this incipient impairment of cognitive flexibility may be associated with intrinsically abnormal functional connectivity of fronto-striatal circuitry in pre-HD.


Assuntos
Cognição , Corpo Estriado/patologia , Doença de Huntington/patologia , Córtex Pré-Frontal/patologia , Adulto , Estudos de Casos e Controles , Cognição/fisiologia , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/fisiopatologia , Feminino , Humanos , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Testes Neuropsicológicos , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiopatologia , Adulto Jovem
12.
Brain Commun ; 2(1): fcaa049, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32954301

RESUMO

Non-invasive methods, such as neurofeedback training, could support cognitive symptom management in Huntington's disease by targeting brain regions whose function is impaired. The aim of our single-blind, sham-controlled study was to collect rigorous evidence regarding the feasibility of neurofeedback training in Huntington's disease by examining two different methods, activity and connectivity real-time functional MRI neurofeedback training. Thirty-two Huntington's disease gene-carriers completed 16 runs of neurofeedback training, using an optimized real-time functional MRI protocol. Participants were randomized into four groups, two treatment groups, one receiving neurofeedback derived from the activity of the supplementary motor area, and another receiving neurofeedback based on the correlation of supplementary motor area and left striatum activity (connectivity neurofeedback training), and two sham control groups, matched to each of the treatment groups. We examined differences between the groups during neurofeedback training sessions and after training at follow-up sessions. Transfer of training was measured by measuring the participants' ability to upregulate neurofeedback training target levels without feedback (near transfer), as well as by examining change in objective, a priori defined, behavioural measures of cognitive and psychomotor function (far transfer) before and at 2 months after training. We found that the treatment group had significantly higher neurofeedback training target levels during the training sessions compared to the control group. However, we did not find robust evidence of better transfer in the treatment group compared to controls, or a difference between the two neurofeedback training methods. We also did not find evidence in support of a relationship between change in cognitive and psychomotor function and learning success. We conclude that although there is evidence that neurofeedback training can be used to guide participants to regulate the activity and connectivity of specific regions in the brain, evidence regarding transfer of learning and clinical benefit was not robust.

13.
Hum Brain Mapp ; 41(14): 3839-3854, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729652

RESUMO

Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Neurorretroalimentação/fisiologia , Prática Psicológica , Adulto , Humanos , Prognóstico
14.
Lancet Neurol ; 19(6): 502-512, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32470422

RESUMO

BACKGROUND: Disease-modifying treatments are in development for Huntington's disease; crucial to their success is to identify a timepoint in a patient's life when there is a measurable biomarker of early neurodegeneration while clinical function is still intact. We aimed to identify this timepoint in a novel cohort of young adult premanifest Huntington's disease gene carriers (preHD) far from predicted clinical symptom onset. METHODS: We did the Huntington's disease Young Adult Study (HD-YAS) in the UK. We recruited young adults with preHD and controls matched for age, education, and sex to ensure each group had at least 60 participants with imaging data, accounting for scan fails. Controls either had a family history of Huntington's disease but a negative genetic test, or no known family history of Huntington's disease. All participants underwent detailed neuropsychiatric and cognitive assessments, including tests from the Cambridge Neuropsychological Test Automated Battery and a battery assessing emotion, motivation, impulsivity and social cognition (EMOTICOM). Imaging (done for all participants without contraindications) included volumetric MRI, diffusion imaging, and multiparametric mapping. Biofluid markers of neuronal health were examined using blood and CSF collection. We did a cross-sectional analysis using general least-squares linear models to assess group differences and associations with age and CAG length, relating to predicted years to clinical onset. Results were corrected for multiple comparisons using the false discovery rate (FDR), with FDR <0·05 deemed a significant result. FINDINGS: Data were obtained between Aug 2, 2017, and April 25, 2019. We recruited 64 young adults with preHD and 67 controls. Mean ages of participants were 29·0 years (SD 5·6) and 29·1 years (5·7) in the preHD and control groups, respectively. We noted no significant evidence of cognitive or psychiatric impairment in preHD participants 23·6 years (SD 5·8) from predicted onset (FDR 0·22-0·87 for cognitive measures, 0·31-0·91 for neuropsychiatric measures). The preHD cohort had slightly smaller putamen volumes (FDR=0·03), but this did not appear to be closely related to predicted years to onset (FDR=0·54). There were no group differences in other brain imaging measures (FDR >0·16). CSF neurofilament light protein (NfL), plasma NfL, and CSF YKL-40 were elevated in this far-from-onset preHD cohort compared with controls (FDR<0·0001, =0·01, and =0·03, respectively). CSF NfL elevations were more likely in individuals closer to expected clinical onset (FDR <0·0001). INTERPRETATION: We report normal brain function yet a rise in sensitive measures of neurodegeneration in a preHD cohort approximately 24 years from predicted clinical onset. CSF NfL appears to be a more sensitive measure than plasma NfL to monitor disease progression. This preHD cohort is one of the earliest yet studied, and our findings could be used to inform decisions about when to initiate a potential future intervention to delay or prevent further neurodegeneration while function is intact. FUNDING: Wellcome Trust, CHDI Foundation.


Assuntos
Doença de Huntington/diagnóstico por imagem , Doença de Huntington/genética , Adulto , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Encéfalo/fisiopatologia , Proteína 1 Semelhante à Quitinase-3/líquido cefalorraquidiano , Estudos Transversais , Progressão da Doença , Feminino , Heterozigoto , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Proteínas de Neurofilamentos/sangue , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Proteínas de Neurofilamentos/metabolismo , Neuroimagem , Testes Neuropsicológicos , Putamen/diagnóstico por imagem , Reino Unido , Adulto Jovem
15.
Proc Natl Acad Sci U S A ; 116(37): 18732-18737, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451671

RESUMO

Human behavior is surprisingly variable, even when facing the same problem under identical circumstances. A prominent example is risky decision making. Economic theories struggle to explain why humans are so inconsistent. Resting-state studies suggest that ongoing endogenous fluctuations in brain activity can influence low-level perceptual and motor processes, but it remains unknown whether endogenous fluctuations also influence high-level cognitive processes including decision making. Here, using real-time functional magnetic resonance imaging, we tested whether risky decision making is influenced by endogenous fluctuations in blood oxygenation level-dependent (BOLD) activity in the dopaminergic midbrain, encompassing ventral tegmental area and substantia nigra. We show that low prestimulus brain activity leads to increased risky choice in humans. Using computational modeling, we show that increased risk taking is explained by enhanced phasic responses to offers in a decision network. Our findings demonstrate that endogenous brain activity provides a physiological basis for variability in complex human behavior.


Assuntos
Comportamento de Escolha/fisiologia , Cognição/fisiologia , Assunção de Riscos , Substância Negra/fisiologia , Área Tegmentar Ventral/fisiologia , Adulto , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Rede Nervosa/fisiologia , Oxigênio/sangue , Consumo de Oxigênio/fisiologia , Substância Negra/citologia , Substância Negra/diagnóstico por imagem , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/diagnóstico por imagem , Adulto Jovem
16.
Biol Psychiatry ; 83(5): 456-465, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29174593

RESUMO

BACKGROUND: The earliest white matter changes in Huntington's disease are seen before disease onset in the premanifest stage around the striatum, within the corpus callosum, and in posterior white matter tracts. While experimental evidence suggests that these changes may be related to abnormal gene transcription, we lack an understanding of the biological processes driving this regional vulnerability. METHODS: Here, we investigate the relationship between regional transcription in the healthy brain, using the Allen Institute for Brain Science transcriptome atlas, and regional white matter connectivity loss at three time points over 24 months in subjects with premanifest Huntington's disease relative to control participants. The baseline cohort included 72 premanifest Huntington's disease participants and 85 healthy control participants. RESULTS: We show that loss of corticostriatal, interhemispheric, and intrahemispheric white matter connections at baseline and over 24 months in premanifest Huntington's disease is associated with gene expression profiles enriched for synaptic genes and metabolic genes. Corticostriatal gene expression profiles are predominately associated with motor, parietal, and occipital regions, while interhemispheric expression profiles are associated with frontotemporal regions. We also show that genes with known abnormal transcription in human Huntington's disease and animal models are overrepresented in synaptic gene expression profiles, but not in metabolic gene expression profiles. CONCLUSIONS: These findings suggest a dual mechanism of white matter vulnerability in Huntington's disease, in which abnormal transcription of synaptic genes and metabolic disturbance not related to transcription may drive white matter loss.


Assuntos
Córtex Cerebral , Corpo Estriado , Perfilação da Expressão Gênica , Expressão Gênica , Doença de Huntington , Rede Nervosa , Transcriptoma , Substância Branca , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Estudos Transversais , Imagem de Tensor de Difusão , Seguimentos , Expressão Gênica/genética , Humanos , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Sintomas Prodrômicos , Transcriptoma/genética , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Substância Branca/patologia
17.
Hum Brain Mapp ; 39(3): 1339-1353, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29239063

RESUMO

Novel methods that stimulate neuroplasticity are increasingly being studied to treat neurological and psychiatric conditions. We sought to determine whether real-time fMRI neurofeedback training is feasible in Huntington's disease (HD), and assess any factors that contribute to its effectiveness. In this proof-of-concept study, we used this technique to train 10 patients with HD to volitionally regulate the activity of their supplementary motor area (SMA). We collected detailed behavioral and neuroimaging data before and after training to examine changes of brain function and structure, and cognitive and motor performance. We found that patients overall learned to increase activity of the target region during training with variable effects on cognitive and motor behavior. Improved cognitive and motor performance after training predicted increases in pre-SMA grey matter volume, fMRI activity in the left putamen, and increased SMA-left putamen functional connectivity. Although we did not directly target the putamen and corticostriatal connectivity during neurofeedback training, our results suggest that training the SMA can lead to regulation of associated networks with beneficial effects in behavior. We conclude that neurofeedback training can induce plasticity in patients with Huntington's disease despite the presence of neurodegeneration, and the effects of training a single region may engage other regions and circuits implicated in disease pathology.


Assuntos
Doença de Huntington/fisiopatologia , Imageamento por Ressonância Magnética , Córtex Motor/fisiopatologia , Neurorretroalimentação/métodos , Plasticidade Neuronal , Adulto , Idoso , Mapeamento Encefálico , Cognição/fisiologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/patologia , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Atividade Motora/fisiologia , Córtex Motor/diagnóstico por imagem , Córtex Motor/patologia , Neurorretroalimentação/fisiologia , Plasticidade Neuronal/fisiologia , Tamanho do Órgão , Estudo de Prova de Conceito , Hemorragia Putaminal/diagnóstico por imagem , Hemorragia Putaminal/fisiopatologia , Volição/fisiologia
18.
JCI Insight ; 2(8)2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28422761

RESUMO

We lack a mechanistic explanation for the stereotyped pattern of white matter loss seen in Huntington's disease (HD). While the earliest white matter changes are seen around the striatum, within the corpus callosum, and in the posterior white matter tracts, the order in which these changes occur and why these white matter connections are specifically vulnerable is unclear. Here, we use diffusion tractography in a longitudinal cohort of individuals yet to develop clinical symptoms of HD to identify a hierarchy of vulnerability, where the topological length of white matter connections between a brain area and its neighbors predicts the rate of atrophy over 24 months. This demonstrates a new principle underlying neurodegeneration in HD, whereby brain connections with the greatest topological length are the first to suffer damage that can account for the stereotyped pattern of white matter loss observed in premanifest HD.

20.
Front Psychol ; 8: 2363, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375455

RESUMO

Cognitive impairment is common amongst many neurodegenerative movement disorders such as Huntington's disease (HD) and Parkinson's disease (PD) across multiple domains. There are many tasks available to assess different aspects of this dysfunction, however, it is imperative that these show high test-retest reliability if they are to be used to track disease progression or response to treatment in patient populations. Moreover, in order to ensure effects of practice across testing sessions are not misconstrued as clinical improvement in clinical trials, tasks which are particularly vulnerable to practice effects need to be highlighted. In this study we evaluated test-retest reliability in mean performance across three testing sessions of four tasks that are commonly used to measure cognitive dysfunction associated with striatal impairment: a combined Simon Stop-Signal Task; a modified emotion recognition task; a circle tracing task; and the trail making task. Practice effects were seen between sessions 1 and 2 across all tasks for the majority of dependent variables, particularly reaction time variables; some, but not all, diminished in the third session. Good test-retest reliability across all sessions was seen for the emotion recognition, circle tracing, and trail making test. The Simon interference effect and stop-signal reaction time (SSRT) from the combined-Simon-Stop-Signal task showed moderate test-retest reliability, however, the combined SSRT interference effect showed poor test-retest reliability. Our results emphasize the need to use control groups when tracking clinical progression or use pre-baseline training on tasks susceptible to practice effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA