Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 203(5): 614-627, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33021405

RESUMO

Rationale: Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by abnormally elevated pulmonary pressures and right ventricular failure. Excessive proliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs) is one of the most important drivers of vascular remodeling in PAH, for which available treatments have limited effectiveness.Objectives: To gain insights into the mechanisms leading to the development of the disease and identify new actionable targets.Methods: Protein expression profiling was conducted by two-dimensional liquid chromatography coupled to tandem mass spectrometry in isolated PASMCs from controls and patients with PAH. Multiple molecular, biochemical, and pharmacologic approaches were used to decipher the role of NUDT1 (nudrix hyrolase 1) in PAH.Measurements and Main Results: Increased expression of the detoxifying DNA enzyme NUDT1 was detected in cells and tissues from patients with PAH and animal models. In vitro, molecular or pharmacological inhibition of NUDT1 in PAH-PASMCs induced accumulation of oxidized nucleotides in the DNA, irresolvable DNA damage (comet assay), disruption of cellular bioenergetics (Seahorse), and cell death (terminal deoxynucleotidyl transferase dUTP nick end labeling assay). In two animal models with established PAH (i.e., monocrotaline and Sugen/hypoxia-treated rats), pharmacological inhibition of NUDT1 using (S)-Crizotinib significantly decreased pulmonary vascular remodeling and improved hemodynamics and cardiac function.Conclusions: Our results indicate that, by overexpressing NUDT1, PAH-PASMCs hijack persistent oxidative stress in preventing incorporation of oxidized nucleotides into DNA, thus allowing the cell to escape apoptosis and proliferate. Given that NUDT1 inhibitors are under clinical investigation for cancer, they may represent a new therapeutic option for PAH.


Assuntos
Enzimas Reparadoras do DNA/genética , DNA/metabolismo , Estresse Oxidativo/genética , Monoéster Fosfórico Hidrolases/genética , Hipertensão Arterial Pulmonar/genética , Artéria Pulmonar/metabolismo , Remodelação Vascular/genética , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Adulto , Idoso , Animais , Apoptose/genética , Western Blotting , Estudos de Casos e Controles , Proliferação de Células/genética , Cromatografia Líquida , Ensaio Cometa , Enzimas Reparadoras do DNA/antagonistas & inibidores , Enzimas Reparadoras do DNA/metabolismo , Modelos Animais de Doenças , Feminino , Proteína Forkhead Box M1/metabolismo , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Oxirredução , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Pirofosfatases/antagonistas & inibidores , Pirofosfatases/genética , Pirofosfatases/metabolismo , RNA Mensageiro/metabolismo , Ratos , Espectrometria de Massas em Tandem , Regulação para Cima
2.
Arterioscler Thromb Vasc Biol ; 40(3): 783-801, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31969012

RESUMO

OBJECTIVE: Pulmonary arterial hypertension (PAH) is a fatal disease characterized by the narrowing of pulmonary arteries (PAs). It is now established that this phenotype is associated with enhanced PA smooth muscle cells (PASMCs) proliferation and suppressed apoptosis. This phenotype is sustained in part by the activation of several DNA repair pathways allowing PASMCs to survive despite the unfavorable environmental conditions. PIM1 (Moloney murine leukemia provirus integration site) is an oncoprotein upregulated in PAH and involved in many prosurvival pathways, including DNA repair. The objective of this study was to demonstrate the implication of PIM1 in the DNA damage response and the beneficial effect of its inhibition by pharmacological inhibitors in human PAH-PASMCs and in rat PAH models. Approach and Results: We found in vitro that PIM1 inhibition by either SGI-1776, TP-3654, siRNA (silencer RNA) decreased the phosphorylation of its newly identified direct target KU70 (lupus Ku autoantigen protein p70) resulting in the inhibition of double-strand break repair (Comet Assay) by the nonhomologous end-joining as well as reduction of PAH-PASMCs proliferation (Ki67-positive cells) and resistance to apoptosis (Annexin V positive cells) of PAH-PASMCs. In vivo, SGI-1776 and TP-3654 given 3× a week, improved significantly pulmonary hemodynamics (right heart catheterization) and vascular remodeling (Elastica van Gieson) in monocrotaline and Fawn-Hooded rat models of PAH. CONCLUSIONS: We demonstrated that PIM1 phosphorylates KU70 and initiates DNA repair signaling in PAH-PASMCs and that PIM1 inhibitors represent a therapeutic option for patients with PAH.


Assuntos
Dano ao DNA , Reparo do DNA por Junção de Extremidades , Hipertensão Pulmonar/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Animais , Anti-Hipertensivos/farmacologia , Apoptose , Proliferação de Células , Células Cultivadas , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Histonas/metabolismo , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Autoantígeno Ku/metabolismo , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Fosfoproteínas/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/genética , Artéria Pulmonar/enzimologia , Artéria Pulmonar/patologia , Ratos Sprague-Dawley , Remodelação Vascular
3.
Arterioscler Thromb Vasc Biol ; 39(8): 1667-1681, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31092016

RESUMO

OBJECTIVE: Pulmonary arterial hypertension (PAH) is a debilitating disease associated with progressive vascular remodeling of distal pulmonary arteries leading to elevation of pulmonary artery pressure, right ventricular hypertrophy, and death. Although presenting high levels of DNA damage that normally jeopardize their viability, pulmonary artery smooth muscle cells (PASMCs) from patients with PAH exhibit a cancer-like proproliferative and apoptosis-resistant phenotype accounting for vascular lumen obliteration. In cancer cells, overexpression of the serine/threonine-protein kinase CHK1 (checkpoint kinase 1) is exploited to counteract the excess of DNA damage insults they are exposed to. This study aimed to determine whether PAH-PASMCs have developed an orchestrated response mediated by CHK1 to overcome DNA damage, allowing cell survival and proliferation. Approach and Results: We demonstrated that CHK1 expression is markedly increased in isolated PASMCs and distal PAs from patients with PAH compared with controls, as well as in multiple complementary animal models recapitulating the disease, including monocrotaline rats and the simian immunodeficiency virus-infected macaques. Using a pharmacological and molecular loss of function approach, we showed that CHK1 promotes PAH-PASMCs proliferation and resistance to apoptosis. In addition, we found that inhibition of CHK1 induces downregulation of the DNA repair protein RAD 51 and severe DNA damage. In vivo, we provided evidence that pharmacological inhibition of CHK1 significantly reduces vascular remodeling and improves hemodynamic parameters in 2 experimental rat models of PAH. CONCLUSIONS: Our results show that CHK1 exerts a proproliferative function in PAH-PASMCs by mitigating DNA damage and suggest that CHK1 inhibition may, therefore, represent an attractive therapeutic option for patients with PAH.


Assuntos
Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Hipertensão Arterial Pulmonar/tratamento farmacológico , Animais , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Células Cultivadas , Quinase 1 do Ponto de Checagem/fisiologia , Dano ao DNA , Modelos Animais de Doenças , Humanos , Masculino , MicroRNAs/fisiologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/fisiologia , Ratos , Ratos Sprague-Dawley
4.
J Mol Med (Berl) ; 96(2): 223-235, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29290032

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive vascular remodeling disease characterized by a persistent elevation of pulmonary artery pressure, leading to right heart failure and premature death. Exaggerated proliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs) is a key component of vascular remodeling. Despite major advances in the field, current therapies for PAH remain poorly effective in reversing the disease or significantly improving long-term survival. Because the transcription factor FOXM1 is necessary for PASMC proliferation during lung morphogenesis and its overexpression stimulates proliferation and evasion of apoptosis in cancer cells, we thus hypothesized that upregulation of FOXM1 in PAH-PASMCs promotes cell expansion and vascular remodeling. Our results showed that FOXM1 was markedly increased in distal pulmonary arteries and isolated PASMCs from PAH patients compared to controls as well as in two preclinical models. In vitro, we showed that miR-204 expression regulates FOXM1 levels and that inhibition of FOXM1 reduced cell proliferation and resistance to apoptosis through diminished DNA repair mechanisms and decreased expression of the pro-remodeling factor survivin. Accordingly, inhibition of FOXM1 with thiostrepton significantly improved established PAH in two rat models. Thus, we show for the first time that FOXM1 is implicated in PAH development and represents a new promising target. KEY MESSAGES: FOXM1 is overexpressed in human PAH-PASMCs and PAH animal models. FOXM1 promotes PAH-PASMC proliferation and resistance to apoptosis. Pharmacological inhibition of FOXM1 improves established PAH in the MCT and Su/Hx rat models. FOXM1 may be a novel therapeutic target in PAH.


Assuntos
Proteína Forkhead Box M1/fisiologia , Hipertensão Pulmonar/metabolismo , Miócitos de Músculo Liso/fisiologia , Artéria Pulmonar/fisiologia , Animais , Linhagem Celular , Proliferação de Células , Proteína Forkhead Box M1/antagonistas & inibidores , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/metabolismo , Masculino , MicroRNAs/metabolismo , Artéria Pulmonar/citologia , Ratos Sprague-Dawley , Tioestreptona/uso terapêutico , Remodelação Vascular
5.
Pulm Circ ; 8(1): 2045893217741429, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29064353

RESUMO

Dysregulated metabolism and rarefaction of the capillary network play a critical role in pulmonary arterial hypertension (PAH) etiology. They are associated with a decrease in perfusion of the lungs, skeletal muscles, and right ventricle (RV). Previous studies suggested that endothelin-1 (ET-1) modulates both metabolism and angiogenesis. We hypothesized that dual ETA/ETB receptors blockade improves PAH by improving cell metabolism and promoting angiogenesis. Five weeks after disease induction, Sugen/hypoxic rats presented severe PAH with pulmonary artery (PA) remodeling, RV hypertrophy and capillary rarefaction in the lungs, RV, and skeletal muscles (microCT angiogram, lectin perfusion, CD31 staining). Two-week treatment with dual ETA/ETB receptors antagonist macitentan (30 mg/kg/d) significantly improved pulmonary hemodynamics, PA vascular remodeling, and RV function and hypertrophy compared to vehicle-treated animals (all P = 0.05). Moreover, macitentan markedly increased lung, RV and quadriceps perfusion, and microvascular density (all P = 0.05). In vitro, these effects were associated with increases in oxidative phosphorylation (oxPhox) and markedly reduced cell proliferation of PAH-PA smooth muscle cells (PASMCs) treated with macitentan without affecting apoptosis. While macitentan did not affect oxPhox, proliferation, and apoptosis of PAH-PA endothelial cells (PAECs), it significantly improved their angiogenic capacity (tube formation assay). Exposure of control PASMC and PAEC to ET-1 fully mimicked the PAH cells phenotype, thus confirming that ET-1 is implicated in both metabolism and angiogenesis abnormalities in PAH. Dual ETA/ETB receptor blockade improved the metabolic changes involved in PAH-PASMCs' proliferation and the angiogenic capacity of PAH-PAEC leading to an increased capillary density in lungs, RV, and skeletal muscles.

6.
Sci Rep ; 7(1): 4546, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28674407

RESUMO

Pulmonary arterial hypertension (PAH) is a vascular remodeling disease with limited therapeutic options. Although exposed to stressful conditions, pulmonary artery (PA) smooth muscle cells (PASMCs) exhibit a "cancer-like" pro-proliferative and anti-apoptotic phenotype. HDAC6 is a cytoplasmic histone deacetylase regulating multiple pro-survival mechanisms and overexpressed in response to stress in cancer cells. Due to the similarities between cancer and PAH, we hypothesized that HDAC6 expression is increased in PAH-PASMCs to face stress allowing them to survive and proliferate, thus contributing to vascular remodeling in PAH. We found that HDAC6 is significantly up-regulated in lungs, distal PAs, and isolated PASMCs from PAH patients and animal models. Inhibition of HDAC6 reduced PAH-PASMC proliferation and resistance to apoptosis in vitro sparing control cells. Mechanistically, we demonstrated that HDAC6 maintains Ku70 in a hypoacetylated state, blocking the translocation of Bax to mitochondria and preventing apoptosis. In vivo, pharmacological inhibition of HDAC6 improved established PAH in two experimental models and can be safely given in combination with currently approved PAH therapies. Moreover, Hdac6 deficient mice were partially protected against chronic hypoxia-induced pulmonary hypertension. Our study shows for the first time that HDAC6 is implicated in PAH development and represents a new promising target to improve PAH.


Assuntos
Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Acetilação , Animais , Apoptose/genética , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP90/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia , Imuno-Histoquímica , Autoantígeno Ku/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Miócitos de Músculo Liso/metabolismo , Ratos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
7.
Am J Respir Crit Care Med ; 194(10): 1273-1285, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27149112

RESUMO

RATIONALE: Pulmonary arterial hypertension (PAH) is characterized by excessive proliferation of pulmonary artery smooth muscle cells (PASMCs). This is sustained in time by the down-regulation of microRNA (miR)-204. In systemic vascular diseases, reduced miR-204 expression promotes vascular biomineralization by augmenting the expression of the transcription factor Runt-related transcription factor 2 (RUNX2). Implication of RUNX2 in PAH-related vascular remodeling and presence of calcified lesions in PAH remain unexplored. OBJECTIVES: We hypothesized that RUNX2 is up-regulated in lungs of patients with PAH, contributing to vascular remodeling and calcium-related biomineralization. METHODS: We harvested human lung tissues in which we assessed calcification lesions and RUNX2 expression. We also isolated PASMCs from these tissues for in vitro analyses. Using a bidirectional approach, we investigated the role for RUNX2 in cell proliferation, apoptosis, and calcification capacity. Ectopic delivery of small interfering RNA against RUNX2 was used in an animal model of PAH to evaluate the therapeutic potential of RUNX2 inhibition in this disease. MEASUREMENTS AND MAIN RESULTS: Patients with PAH display features of calcified lesions within the distal pulmonary arteries (PAs). We show that RUNX2 is up-regulated in lungs, distal PAs, and primary cultured human PASMCs isolated from PAH and compared with patients without PAH. RUNX2 expression histologically correlates with vascular remodeling and calcification. Using in vitro gain- and loss-of-function approaches, we mechanistically demonstrate that miR-204 diminution promotes RUNX2 up-regulation and that sustained RUNX2 expression activates hypoxia-inducible factor-1α, leading to aberrant proliferation, resistance to apoptosis, and subsequent transdifferentiation of PAH-PASMCs into osteoblast-like cells. In the PAH Sugen/hypoxia rat model, molecular RUNX2 inhibition reduces PA remodeling and prevents calcification, thus improving pulmonary hemodynamic parameters and right ventricular function. CONCLUSIONS: RUNX2 plays a pivotal role in the pathogenesis of PAH, contributing to the development of proliferative and calcified PA lesions. Inhibition of RUNX2 may therefore represent an attractive therapeutic strategy for PAH.


Assuntos
Proliferação de Células/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Calcificação Vascular/genética , Calcificação Vascular/fisiopatologia , Adulto , Proliferação de Células/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
Circ Res ; 117(6): 525-35, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26224795

RESUMO

RATIONALE: Pulmonary arterial hypertension (PAH) is a vasculopathy characterized by enhanced pulmonary artery (PA) smooth muscle cell (PASMC) proliferation and suppressed apoptosis. Decreased expression of microRNA-204 has been associated to this phenotype. By a still elusive mechanism, microRNA-204 downregulation promotes the expression of oncogenes, including nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. In cancer, increased expression of the epigenetic reader bromodomain-containing protein 4 (BRD4) sustains cell survival and proliferation. Interestingly, BRD4 is a predicted target of microRNA-204 and has binding sites on the nuclear factor of activated T cells promoter region. OBJECTIVE: To investigate the role of BRD4 in PAH pathogenesis. METHODS AND RESULTS: BRD4 is upregulated in lungs, distal PAs, and PASMCs of patients with PAH compared with controls. With mechanistic in vitro experiments, we demonstrated that BRD4 expression in PAH is microRNA-204 dependent. We further studied the molecular downstream targets of BRD4 by inhibiting its activity in PAH-PASMCs using a clinically available inhibitor JQ1. JQ1 treatment in PAH-PASMCs increased p21 expression, thus triggering cell cycle arrest. Furthermore, BRD4 inhibition, by JQ1 or siBRD4, decreased the expression of 3 major oncogenes, which are overexpressed in PAH: nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. Blocking this oncogenic signature led to decreased PAH-PASMC proliferation and increased apoptosis in a BRD4-dependent manner. Indeed, pharmacological JQ1 or molecular (siRNA) inhibition of BRD4 reversed this pathological phenotype in addition to restoring mitochondrial membrane potential and to increasing cells spare respiratory capacity. Moreover, BRD4 inhibition in vivo reversed established PAH in the Sugen/hypoxia rat model. CONCLUSIONS: BRD4 plays a key role in the pathological phenotype in PAH, which could offer new therapeutic perspectives for patients with PAH.


Assuntos
Epigênese Genética/fisiologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Proteínas Nucleares/biossíntese , Artéria Pulmonar/metabolismo , Fatores de Transcrição/biossíntese , Adulto , Idoso , Animais , Proteínas de Ciclo Celular , Células Cultivadas , Feminino , Humanos , Hipertensão Pulmonar/patologia , Masculino , Pessoa de Meia-Idade , Artéria Pulmonar/patologia , Ratos
9.
Circulation ; 132(10): 932-43, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26162916

RESUMO

BACKGROUND: Right ventricular (RV) failure is the most important factor of both morbidity and mortality in pulmonary arterial hypertension (PAH). However, the underlying mechanisms resulting in the failed RV in PAH remain unknown. There is growing evidence that angiogenesis and microRNAs are involved in PAH-associated RV failure. We hypothesized that microRNA-126 (miR-126) downregulation decreases microvessel density and promotes the transition from a compensated to a decompensated RV in PAH. METHODS AND RESULTS: We studied RV free wall tissues from humans with normal RV (n=17), those with compensated RV hypertrophy (n=8), and patients with PAH with decompensated RV failure (n=14). Compared with RV tissues from patients with compensated RV hypertrophy, patients with decompensated RV failure had decreased miR-126 expression (quantitative reverse transcription-polymerase chain reaction; P<0.01) and capillary density (CD31(+) immunofluorescence; P<0.001), whereas left ventricular tissues were not affected. miR-126 downregulation was associated with increased Sprouty-related EVH1 domain-containing protein 1 (SPRED-1), leading to decreased activation of RAF (phosphorylated RAF/RAF) and mitogen-activated protein kinase (MAPK); (phosphorylated MAPK/MAPK), thus inhibiting the vascular endothelial growth factor pathway. In vitro, Matrigel assay showed that miR-126 upregulation increased angiogenesis of primary cultured endothelial cells from patients with decompensated RV failure. Furthermore, in vivo miR-126 upregulation (mimic intravenous injection) improved cardiac vascular density and function of monocrotaline-induced PAH animals. CONCLUSIONS: RV failure in PAH is associated with a specific molecular signature within the RV, contributing to a decrease in RV vascular density and promoting the progression to RV failure. More importantly, miR-126 upregulation in the RV improves microvessel density and RV function in experimental PAH.


Assuntos
Regulação para Baixo/fisiologia , Insuficiência Cardíaca/metabolismo , Hipertensão Pulmonar/metabolismo , MicroRNAs/metabolismo , Disfunção Ventricular Direita/metabolismo , Adulto , Idoso , Animais , Células Cultivadas , Feminino , Insuficiência Cardíaca/diagnóstico , Humanos , Hipertensão Pulmonar/diagnóstico , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Disfunção Ventricular Direita/diagnóstico
10.
J Comp Neurol ; 522(12): 2707-28, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24610630

RESUMO

Transplantation of human neural progenitor cells (NPCs) into the brain or spinal cord to replace lost cells, modulate the injury environment, or create a permissive milieu to protect and regenerate host neurons is a promising therapeutic strategy for neurological diseases. Deriving NPCs from human fetal tissue is feasible, although problematic issues include limited sources and ethical concerns. Here we describe a new and abundant source of NPCs derived from human induced pluripotent stem cells (iPSCs). A novel chopping technique was used to transform adherent iPSCs into free-floating spheres that were easy to maintain and were expandable (EZ spheres) (Ebert et al. [2013] Stem Cell Res 10:417-427). These EZ spheres could be differentiated towards NPC spheres with a spinal cord phenotype using a combination of all-trans retinoic acid (RA) and epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2) mitogens. Suspension cultures of NPCs derived from human iPSCs or fetal tissue have similar characteristics, although they were not similar when grown as adherent cells. In addition, iPSC-derived NPCs (iNPCs) survived grafting into the spinal cord of athymic nude rats with no signs of overgrowth and with a very similar profile to human fetal-derived NPCs (fNPCs). These results suggest that human iNPCs behave like fNPCs and could thus be a valuable alternative for cellular regenerative therapies of neurological diseases.


Assuntos
Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Neurais/fisiologia , Medula Espinal/citologia , Análise de Variância , Animais , Aquaporina 4/metabolismo , Astrócitos/fisiologia , Humanos , Antígeno Ki-67/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/transplante , Neurônios/metabolismo , Ratos , Ratos Nus , Medula Espinal/cirurgia , Transcriptoma/fisiologia
11.
PLoS One ; 8(5): e64957, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23705021

RESUMO

Type 2 diabetes is characterized by both insulin resistance and progressive deterioration of ß-cell function. The forkhead transcription factor FoxO1 is a prominent mediator of insulin signaling in ß-cells. We reasoned that identification of FoxO1 target genes in ß-cells could reveal mechanisms linking ß-cell dysfunction to insulin resistance. In this study, we report the characterization of Nov/Ccn3 as a novel transcriptional target of FoxO1 in pancreatic ß-cells. FoxO1 binds to an evolutionarily conserved response element in the Ccn3 promoter to regulate its expression. Accordingly, CCN3 levels are elevated in pancreatic islets of mice with overexpression of a constitutively active form of FoxO1 or insulin resistance. Our functional studies reveal that CCN3 impairs ß-cell proliferation concomitantly with a reduction in cAMP levels. Moreover, CCN3 decreases glucose oxidation, which translates into inhibition of glucose-stimulated Ca(2+) entry and insulin secretion. Our results identify CCN3, a novel transcriptional target of FoxO1 in pancreatic ß-cells, as a potential target for therapeutic intervention in the treatment of diabetes.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Células Secretoras de Insulina/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Sequência Conservada/genética , Modelos Animais de Doenças , Proteína Forkhead Box O1 , Glucose/farmacologia , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Camundongos , Proteína Sobre-Expressa em Nefroblastoma/genética , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
12.
PLoS One ; 7(4): e34932, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22523565

RESUMO

Proliferation of glia and immune cells is a common pathological feature of many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Here, to investigate the role of proliferating cells in motor neuron disease, SOD1(G93A) transgenic mice were treated intracerebroventicularly (i.c.v.) with the anti-mitotic drug cytosine arabinoside (Ara-C). I.c.v. delivery of Ara-C accelerated disease progression in SOD1(G93A) mouse model of ALS. Ara-C treatment caused substantial decreases in the number of microglia, NG2+ progenitors, Olig2+ cells and CD3+ T cells in the lumbar spinal cord of symptomatic SOD1(G93A) transgenic mice. Exacerbation of disease was also associated with significant alterations in the expression inflammatory molecules IL-1ß, IL-6, TGF-ß and the growth factor IGF-1.


Assuntos
Doença dos Neurônios Motores/complicações , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Proliferação de Células/efeitos dos fármacos , Citarabina/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
13.
Optom Vis Sci ; 84(10): 954-61, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18049361

RESUMO

PURPOSE: To validate the biocompatibility and transmittance properties of contact lenses bearing intact liposomes. These liposomal lenses loaded with therapeutics can be used as ophthalmic drug delivery systems. METHODS: The biocompatibility of soft contact lenses, coated with liposomes was evaluated through in vitro direct and indirect cytocompatibility assays on human corneal epithelial cells, on reconstructed human corneas and on ex vivo rabbit corneas. The direct and indirect transmission spectra of liposome-covered lenses were also evaluated to test if they transmit all wavelengths of the ultraviolet-visible spectrum, to thereby fulfill their optical function, without gross alteration of the colors perception and with a minimum of light dispersion. RESULTS: Contact lenses bearing layers of stable liposomes did not induce any significant changes in cell viability and in cell growth, compared with lenses bearing no liposome. Elution assays revealed that no cytotoxic compound leaks from the lenses whether bearing liposomes or not. Histological analyses of reconstructed human corneas and ex vivo rabbit corneas directly exposed to liposomal lenses revealed neither alteration to the cell nor to the tissue structures. Contact lenses bearing layers of liposomes did not significantly affect light transmission compared with control lenses without liposome at the wavelength of maximal photopic sensitivity, i.e., 550 nm. In addition, the contact lenses afford more eye protection in the ultraviolet spectrum, compared with the control lenses. CONCLUSIONS: Liposomal contact lenses are biocompatible and their transmittance properties are not affected in the visible light range.


Assuntos
Lentes de Contato Hidrofílicas , Luz , Lipossomos , Teste de Materiais , Animais , Divisão Celular , Sobrevivência Celular , Células Cultivadas , Epitélio Corneano/citologia , Epitélio Corneano/fisiologia , Desenho de Equipamento , Humanos , Óptica e Fotônica , Coelhos
14.
Anticancer Res ; 24(4): 2169-77, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15330157

RESUMO

BACKGROUND: Three-dimensional (3-D) culture systems that simulate the tumor extracellular microenvironment may be appropriate to test cancer cell potential for invasion and tumor cell sensitivity to anticancer drugs. MATERIALS AND METHODS: Human PC-3 prostate, A549 colon, HT-29 lung and MCF-7 and MDA-MB231 breast cancer cells were embedded and grown in collagen gel surrounded by a fibrin clot. Increasing concentrations of cisplatin, doxorubicin, paclitaxel and 5-fluorouracil were comparatively evaluated for their ability to inhibit tumor cell proliferation and colony formation in vitro. RESULTS: All cells, except MDA, formed colonies in collagen. PC-3, A549 and HT-29 cells massively invaded fibrin forming migratory fronts. Cell colonies were also formed in fibrin (secondary tumor-like structures) apart from migratory fronts; HT-29 cells were the most aggressive in this regard MDA cells were particularly sensitive to doxorubicin, while MCF-7 cells showed sensitivity to all anticancer regimens tested. A549 cells were the tumor cell type with greatest potential for invasion and were sensitive mostly to cisplatin. PC-3 cells were primarily sensitive to cisplatin and doxorubicin, while HT-29 cells were sensitive to fluorouracil and doxorubicin. CONCLUSION: 3-D collagen cell culture systems can be used to study cancer cell potential for invasion and their relative sensitivity/resistance to anticancer drugs.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Cisplatino/farmacologia , Colágeno , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Doxorrubicina/farmacologia , Fibrina , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Masculino , Invasividade Neoplásica , Paclitaxel/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA