Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 9(8): 862-876, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34006522

RESUMO

The acquisition of mesenchymal traits leads to immune evasion in various cancers, but the underlying molecular mechanisms remain unclear. In this study, we found that the expression levels of AT-rich interaction domain-containing protein 5a (Arid5a), an RNA-binding protein, were substantially increased in mesenchymal tumor subtypes. The deletion of Arid5a in tumor cell lines enhanced antitumor immunity in immunocompetent mice, but not in immunodeficient mice, suggesting a role for Arid5a in immune evasion. Furthermore, an Arid5a-deficient tumor microenvironment was shown to have robust antitumor immunity, as manifested by suppressed infiltration of granulocytic myeloid-derived suppressor cells and regulatory T cells. In addition, infiltrated T cells were more cytotoxic and less exhausted. Mechanistically, Arid5a stabilized Ido1 and Ccl2 mRNAs and augmented their expression, resulting in enhanced tryptophan catabolism and an immunosuppressive tumor microenvironment. Thus, our findings demonstrate the role of Arid5a beyond inflammatory diseases and suggest Arid5a as a promising target for the treatment of immunotolerant malignant tumors.See related Spotlight by Van den Eynde, p. 854.


Assuntos
Quimiocinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Evasão da Resposta Imune/imunologia , Imunoterapia/métodos , Fatores de Transcrição/metabolismo , Triptofano/metabolismo , Animais , Feminino , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Sci Signal ; 13(624)2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209697

RESUMO

The lipopolysaccharide (LPS)-induced endocytosis of Toll-like receptor 4 (TLR4) is an essential step in the production of interferon-ß (IFN-ß), which activates the transcription of antiviral response genes by STAT1 phosphorylated at Tyr701 Here, we showed that STAT1 regulated proinflammatory cytokine production downstream of TLR4 endocytosis independently of IFN-ß signaling and the key proinflammatory regulator NF-κB. In human macrophages, TLR4 endocytosis activated a noncanonical phosphorylation of STAT1 at Thr749, which subsequently promoted the production of interleukin-6 (IL-6) and IL-12p40 through distinct mechanisms. STAT1 phosphorylated at Thr749 activated the expression of the gene encoding ARID5A, which stabilizes IL6 mRNA. Moreover, STAT1 phosphorylated at Thr749 directly enhanced transcription of the gene encoding IL-12p40 (IL12B). Instead of affecting STAT1 nuclear translocation, phosphorylation of Thr749 facilitated the binding of STAT1 to a noncanonical DNA motif (5'-TTTGANNC-3') in the promoter regions of ARID5A and IL12B The endocytosis of TLR4 induced the formation of a complex between the kinases TBK1 and IKKß, which mediated the phosphorylation of STAT1 at Thr749 Our data suggest that noncanonical phosphorylation in response to LPS confers STAT1 with distinct DNA binding and gene-regulatory properties that promote both IL12B expression and IL6 mRNA stabilization. Thus, our study provides a potential mechanism for how TLR4 endocytosis might regulate proinflammatory cytokine production.


Assuntos
Subunidade p40 da Interleucina-12/biossíntese , Interleucina-6/biossíntese , Lipopolissacarídeos/farmacologia , Fator de Transcrição STAT1/metabolismo , Transcrição Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Subunidade p40 da Interleucina-12/genética , Interleucina-6/genética , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Fator de Transcrição STAT1/genética , Células THP-1
3.
Proc Natl Acad Sci U S A ; 116(35): 17450-17459, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31399545

RESUMO

Although KRAS and TP53 mutations are major drivers of pancreatic ductal adenocarcinoma (PDAC), the incurable nature of this cancer still remains largely elusive. ARF6 and its effector AMAP1 are often overexpressed in different cancers and regulate the intracellular dynamics of integrins and E-cadherin, thus promoting tumor invasion and metastasis when ARF6 is activated. Here we show that the ARF6-AMAP1 pathway is a major target by which KRAS and TP53 cooperatively promote malignancy. KRAS was identified to promote eIF4A-dependent ARF6 mRNA translation, which contains a quadruplex structure at its 5'-untranslated region, by inducing TEAD3 and ETV4 to suppress PDCD4; and also eIF4E-dependent AMAP1 mRNA translation, which contains a 5'-terminal oligopyrimidine-like sequence, via up-regulating mTORC1. TP53 facilitated ARF6 activation by platelet-derived growth factor (PDGF), via its known function to promote the expression of PDGF receptor ß (PDGFRß) and enzymes of the mevalonate pathway (MVP). The ARF6-AMAP1 pathway was moreover essential for PDGF-driven recycling of PD-L1, in which KRAS, TP53, eIF4A/4E-dependent translation, mTOR, and MVP were all integral. We moreover demonstrated that the mouse PDAC model KPC cells, bearing KRAS/TP53 mutations, express ARF6 and AMAP1 at high levels and that the ARF6-based pathway is closely associated with immune evasion of KPC cells. Expression of ARF6 pathway components statistically correlated with poor patient outcomes. Thus, the cooperation among eIF4A/4E-dependent mRNA translation and MVP has emerged as a link by which pancreatic driver mutations may promote tumor cell motility, PD-L1 dynamics, and immune evasion, via empowering the ARF6-based pathway and its activation by external ligands.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Antígeno B7-H1/metabolismo , Evasão da Resposta Imune/genética , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Supressora de Tumor p53/genética , Fator 6 de Ribosilação do ADP , Sítios de Ligação , Biomarcadores Tumorais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Modelos Moleculares , Mutação , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Prognóstico , Ligação Proteica , RNA Mensageiro/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais
4.
Proc Natl Acad Sci U S A ; 116(30): 15128-15133, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31289228

RESUMO

Immune cells infiltrate adipose tissues and provide a framework to regulate energy homeostasis. However, the precise underlying mechanisms and signaling by which the immune system regulates energy homeostasis in metabolic tissues remain poorly understood. Here, we show that the AT-rich interactive domain 5A (Arid5a), a cytokine-induced nucleic acid binding protein, is important for the maintenance of adipose tissue homeostasis. Long-term deficiency of Arid5a in mice results in adult-onset severe obesity. In contrast, transgenic mice overexpressing Arid5a are highly resistant to high-fat diet-induced obesity. Inhibition of Arid5a facilitates the in vitro differentiation of 3T3-L1 cells and fibroblasts to adipocytes, whereas its induction substantially inhibits their differentiation. Molecular studies reveal that Arid5a represses the transcription of peroxisome proliferator activated receptor gamma 2 (Ppar-γ2) due to which, in the absence of Arid5a, Ppar-γ2 is persistently expressed in fibroblasts. This phenomenon is accompanied by enhanced fatty acid uptake in Arid5a-deficient cells, which shifts metabolic homeostasis toward prolipid metabolism. Furthermore, we show that Arid5a and Ppar-γ2 are dynamically counterregulated by each other, hence maintaining adipogenic homeostasis. Thus, we show that Arid5a is an important negative regulator of energy metabolism and can be a potential target for metabolic disorders.


Assuntos
Adipogenia/genética , Tecido Adiposo/metabolismo , Proteínas de Ligação a DNA/genética , Retroalimentação Fisiológica , Obesidade/genética , PPAR gama/genética , Fatores de Transcrição/genética , Células 3T3-L1 , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo/patologia , Animais , Transporte Biológico , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Ácidos Graxos/metabolismo , Feminino , Regulação da Expressão Gênica , Homeostase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , PPAR gama/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA