Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Circ Res ; 133(7): 572-587, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37641975

RESUMO

BACKGROUND: A better understanding of the regulation of proteasome activities can facilitate the search for new therapeutic strategies. A cell culture study shows that PKA (cAMP-dependent protein kinase or protein kinase A) activates the 26S proteasome by pS14-Rpn6 (serine14-phosphorylated Rpn6), but this discovery and its physiological significance remain to be established in vivo. METHODS: Male and female mice with Ser14 of Rpn6 (regulatory particle non-ATPase 6) mutated to Ala (S14A [Rpn6/Psmd11S14A]) or Asp (S14D) to respectively block or mimic pS14-Rpn6 were created and used along with cells derived from them. cAMP/PKA were manipulated pharmacologically. Ubiquitin-proteasome system functioning was evaluated with the GFPdgn (green fluorescence protein with carboxyl fusion of the CL1 degron) reporter mouse and proteasomal activity assays. Impact of S14A and S14D on proteotoxicity was tested in mice and cardiomyocytes overexpressing the misfolded protein R120G-CryAB (R120G [arginine120 to glycine missense mutant alpha B-crystallin]). RESULTS: PKA activation increased pS14-Rpn6 and 26S proteasome activities in wild-type but not S14A embryonic fibroblasts (mouse embryonic fibroblasts), adult cardiomyocytes, and mouse hearts. Basal 26S proteasome activities were significantly greater in S14D myocardium and adult mouse cardiomyocytes than in wild-type counterparts. S14D::GFPdgn mice displayed significantly lower myocardial GFPdgn protein but not mRNA levels than GFPdgn mice. In R120G mice, a classic model of cardiac proteotoxicity, basal myocardial pS14-Rpn6 was significantly lower compared with nontransgenic littermates, which was not always associated with reduction of other phosphorylated PKA substrates. Cultured S14D neonatal cardiomyocytes displayed significantly faster proteasomal degradation of R120G than wild-type neonatal cardiomyocytes. Compared with R120G mice, S14D/S14D::R120G mice showed significantly greater myocardial proteasome activities, lower levels of total and K48-linked ubiquitin conjugates, and of aberrant CryAB (alpha B-crystallin) protein aggregates, less fetal gene reactivation, and cardiac hypertrophy, and delays in cardiac malfunction. CONCLUSIONS: This study establishes in animals that pS14-Rpn6 mediates the activation of 26S proteasomes by PKA and that the reduced pS14-Rpn6 is a key pathogenic factor in cardiac proteinopathy, thereby identifying a new therapeutic target to reduce cardiac proteotoxicity.


Assuntos
Complexo de Endopeptidases do Proteassoma , Cadeia B de alfa-Cristalina , Feminino , Masculino , Animais , Camundongos , Fibroblastos , Miócitos Cardíacos , Proteínas Quinases Dependentes de AMP Cíclico , Ubiquitinas
2.
Biology (Basel) ; 12(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37508356

RESUMO

Langerhans cells (LCs) are skin-resident macrophage that act similarly to dendritic cells for controlling adaptive immunity and immune tolerance in the skin, and they are key players in the development of numerous skin diseases. While TGF-ß and related downstream signaling pathways are known to control numerous aspects of LC biology, little is known about the epigenetic signals that coordinate cell signaling during LC ontogeny, maintenance, and function. Our previous studies in a total miRNA deletion mouse model showed that miRNAs are critically involved in embryonic LC development and postnatal LC homeostasis; however, the specific miRNA(s) that regulate LCs remain unknown. miR-23a is the first member of the miR-23a-27a-24-2 cluster, a direct downstream target of PU.1 and TGF-b, which regulate the determination of myeloid versus lymphoid fates. Therefore, we used a myeloid-specific miR-23a deletion mouse model to explore whether and how miR-23a affects LC ontogeny and function in the skin. We observed the indispensable role of miR-23a in LC antigen uptake and inflammation-induced LC epidermal repopulation; however, embryonic LC development and postnatal homeostasis were not affected by cells lacking miR23a. Our results suggest that miR-23a controls LC phagocytosis by targeting molecules that regulate efferocytosis and endocytosis, whereas miR-23a promotes homeostasis in bone marrow-derived LCs that repopulate the skin after inflammatory insult by targeting Fas and Bcl-2 family proapoptotic molecules. Collectively, the context-dependent regulatory role of miR-23a in LCs represents an extra-epigenetic layer that incorporates TGF-b- and PU.1-mediated regulation during steady-state and inflammation-induced repopulation.

3.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066344

RESUMO

Background: A better understanding of the regulation of proteasome activities can facilitate the search for new therapeutic strategies. A cell culture study shows that cAMP-dependent protein kinase (PKA) activates the 26S proteasome by phosphorylating Ser14 of RPN6 (pS14-RPN6), but this discovery and its physiological significance remain to be established in vivo . Methods: Male and female mice with Ser14 of Rpn6 mutated to Ala (S14A) or Asp (S14D) to respectively block or mimic pS14-Rpn6 were created and used along with cells derived from them. cAMP/PKA were manipulated pharmacologically. Ubiquitin-proteasome system (UPS) functioning was evaluated with the GFPdgn reporter mouse and proteasomal activity assays. Impact of S14A and S14D on proteotoxicity was tested in mice and cardiomyocytes overexpressing the misfolded protein R120G-CryAB (R120G). Results: PKA activation increased pS14-Rpn6 and 26S proteasome activities in wild-type (WT) but not S14A embryonic fibroblasts (MEFs), adult cardiomyocytes (AMCMs), and mouse hearts. Basal 26S proteasome activities were significantly greater in S14D myocardium and AMCMs than in WT counterparts. S14D::GFPdgn mice displayed significantly lower myocardial GFPdgn protein but not mRNA levels than GFPdgn mice. In R120G mice, a classic model of cardiac proteotoxicity, basal myocardial pS14-Rpn6 was significantly lower compared with non- transgenic littermates, which was not always associated with reduction of other phosphorylated PKA substrates. Cultured S14D neonatal cardiomyocytes displayed significantly faster proteasomal degradation of R120G than WT neonatal cardiomyocytes. Compared with R120G mice, S14D/S14D::R120G mice showed significantly greater myocardial proteasome activities, lower levels of total and K48-linked ubiquitin conjugates and of aberrant CryAB protein aggregates, less reactivation of fetal genes and cardiac hypertrophy, and delays in cardiac malfunction. Conclusions: This study establishes in animals that pS14-Rpn6 mediates the activation of 26S proteasomes by PKA and that the reduced pS14-Rpn6 is a key pathogenic factor in cardiac proteinopathy, thereby identifies a new therapeutic target to reduce cardiac proteotoxicity.

6.
Nat Metab ; 2(6): 532-546, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32694733

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and death worldwide. Peroxynitrite, formed from nitric oxide, which is derived from inducible nitric oxide synthase, and superoxide, has been implicated in the development of emphysema, but the source of the superoxide was hitherto not characterized. Here, we identify the non-phagocytic NADPH oxidase organizer 1 (NOXO1) as the superoxide source and an essential driver of smoke-induced emphysema and pulmonary hypertension development in mice. NOXO1 is consistently upregulated in two models of lung emphysema, Cybb (also known as NADPH oxidase 2, Nox2)-knockout mice and wild-type mice with tobacco-smoke-induced emphysema, and in human COPD. Noxo1-knockout mice are protected against tobacco-smoke-induced pulmonary hypertension and emphysema. Quantification of superoxide, nitrotyrosine and multiple NOXO1-dependent signalling pathways confirm that peroxynitrite formation from nitric oxide and superoxide is a driver of lung emphysema. Our results suggest that NOXO1 may have potential as a therapeutic target in emphysema.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/efeitos dos fármacos , Enfisema/tratamento farmacológico , Enfisema/genética , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose/efeitos dos fármacos , Enfisema/etiologia , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Ácido Peroxinitroso/metabolismo , Doença Pulmonar Obstrutiva Crônica/complicações , Transdução de Sinais/genética , Superóxidos/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Tirosina/análogos & derivados , Tirosina/metabolismo
8.
Circ Res ; 127(4): 502-518, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32366200

RESUMO

RATIONALE: The ubiquitin-proteasome system (UPS) and the autophagic-lysosomal pathway are pivotal to proteostasis. Targeting these pathways is emerging as an attractive strategy for treating cancer. However, a significant proportion of patients who receive a proteasome inhibitor-containing regime show cardiotoxicity. Moreover, UPS and autophagic-lysosomal pathway defects are implicated in cardiac pathogenesis. Hence, a better understanding of the cross-talk between the 2 catabolic pathways will help advance cardiac pathophysiology and medicine. OBJECTIVE: Systemic proteasome inhibition (PSMI) was shown to increase p62/SQSTM1 expression and induce myocardial macroautophagy. Here we investigate how proteasome malfunction activates cardiac autophagic-lysosomal pathway. METHODS AND RESULTS: Myocardial macroautophagy, TFEB (transcription factor EB) expression and activity, and p62 expression were markedly increased in mice with either cardiomyocyte-restricted ablation of Psmc1 (an essential proteasome subunit gene) or pharmacological PSMI. In cultured cardiomyocytes, PSMI-induced increases in TFEB activation and p62 expression were blunted by pharmacological and genetic calcineurin inhibition and by siRNA-mediated Molcn1 silencing. PSMI induced remarkable increases in myocardial autophagic flux in wild type mice but not p62 null (p62-KO) mice. Bortezomib-induced left ventricular wall thickening and diastolic malfunction was exacerbated by p62 deficiency. In cultured cardiomyocytes from wild type mice but not p62-KO mice, PSMI induced increases in LC3-II flux and the lysosomal removal of ubiquitinated proteins. Myocardial TFEB activation by PSMI as reflected by TFEB nuclear localization and target gene expression was strikingly less in p62-KO mice compared with wild type mice. CONCLUSIONS: (1) The activation of cardiac macroautophagy by proteasomal malfunction is mediated by the Mocln1-calcineurin-TFEB-p62 pathway; (2) p62 unexpectedly exerts a feed-forward effect on TFEB activation by proteasome malfunction; and (3) targeting the Mcoln1 (mucolipin1)-calcineurin-TFEB-p62 pathway may provide new means to intervene cardiac autophagic-lysosomal pathway activation during proteasome malfunction.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Calcineurina/metabolismo , Macroautofagia/fisiologia , Complexo de Endopeptidases do Proteassoma/fisiologia , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Antineoplásicos/farmacologia , Bortezomib/farmacologia , Calcineurina/genética , Inibidores de Calcineurina , Hipertrofia Ventricular Esquerda/induzido quimicamente , Lisossomos/metabolismo , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Inibidores de Proteassoma , Proteostase , RNA Interferente Pequeno , Ratos , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Ubiquitina/metabolismo , Regulação para Cima
9.
Front Immunol ; 11: 912, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457763

RESUMO

Epidermal Langerhans cells (LCs) are skin-resident dendritic cells that are essential for the induction of skin immunity and tolerance. Transforming growth factor-ß 1 (TGFß1) is a crucial factor for LC maintenance and function. However, the underlying TGFß1 signaling pathways remain unclear. Our previous research has shown that the TGFß1/Smad3 signaling pathway does not impact LC homeostasis and maturation. In this study, we generated mice with conditional deletions of either individual Smad2, Smad4, or both Smad2 and Smad4 in the LC lineage or myeloid lineage, to further explore the impact of TGFß1/Smad signaling pathways on LCs. We found that interruption of Smad2 or Smad4 individually or simultaneously in the LC lineage did not significantly impact the maintenance, maturation, antigen uptake, and migration of LCs in vivo or in vitro during steady state. However, the interruption of both Smad2 and Smad4 pathways in the myeloid lineage led to a dramatic inhibition of bone marrow-derived LCs in the inflammatory state. Overall, our data suggest that canonical TGFß1/Smad2/4 signaling pathways are dispensable for epidermal LC homeostasis and maturation at steady state, but are critical for the long-term LC repopulation directly originating from the bone marrow in the inflammatory state.


Assuntos
Proliferação de Células , Dermatite/metabolismo , Epiderme/metabolismo , Células de Langerhans/metabolismo , Proteína Smad2/metabolismo , Proteína Smad4/metabolismo , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Linhagem da Célula , Movimento Celular , Células Cultivadas , Dermatite/genética , Dermatite/imunologia , Dermatite/patologia , Modelos Animais de Doenças , Epiderme/imunologia , Epiderme/patologia , Feminino , Células de Langerhans/imunologia , Células de Langerhans/patologia , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Transdução de Sinais , Proteína Smad2/deficiência , Proteína Smad2/genética , Proteína Smad4/deficiência , Proteína Smad4/genética , Fator de Crescimento Transformador beta1/metabolismo
10.
Circ Heart Fail ; 13(1): e006277, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31957470

RESUMO

BACKGROUND: Although empagliflozin was shown to profoundly reduce cardiovascular events in diabetic patients and blunt the decline in cardiac function in nondiabetic mice with established heart failure (HF), the mechanism of action remains unknown. METHODS AND RESULTS: We treated 2 rodent models of HF with 10 mg/kg per day empagliflozin and measured activation of the NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome in the heart. We show for the first time that beneficial effects of empagliflozin in HF with reduced ejection fraction (HF with reduced ejection fraction [HFrEF]; n=30-34) occur in the absence of changes in circulating ketone bodies, cardiac ketone oxidation, or increased cardiac ATP production. Of note, empagliflozin attenuated activation of the NLRP3 inflammasome and expression of associated markers of sterile inflammation in hearts from mice with HFrEF, implicating reduced cardiac inflammation as a mechanism of empagliflozin that contributes to sustained function in HFrEF in the absence of diabetes mellitus. In addition, we validate that the beneficial cardiac effects of empagliflozin in HF with preserved ejection fraction (HFpEF; n=9-10) are similarly associated with reduced activation of the NLRP3 inflammasome. Lastly, the ability of empagliflozin to reduce inflammation was completely blunted by a calcium (Ca2+) ionophore, suggesting that empagliflozin exerts its benefit upon restoring optimal cytoplasmic Ca2+ levels in the heart. CONCLUSIONS: These data provide evidence that the beneficial cardiac effects of empagliflozin are associated with reduced cardiac inflammation via blunting activation of the NLRP3 inflammasome in a Ca2+-dependent manner and hence may be beneficial in treating HF even in the absence of diabetes mellitus.


Assuntos
Compostos Benzidrílicos/farmacologia , Glucosídeos/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Volume Sistólico/efeitos dos fármacos , Animais , Proteínas de Transporte/metabolismo , Cardiopatias/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Nucleotídeos/metabolismo , Volume Sistólico/fisiologia
11.
Sci Adv ; 5(5): eaaw5870, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31131329

RESUMO

No current treatment targets cardiac proteotoxicity or can reduce mortality of heart failure (HF) with preserved ejection fraction (HFpEF). Selective degradation of misfolded proteins by the ubiquitin-proteasome system (UPS) is vital to the cell. Proteasome impairment contributes to HF. Activation of cAMP-dependent protein kinase (PKA) or cGMP-dependent protein kinase (PKG) facilitates proteasome functioning. Phosphodiesterase 1 (PDE1) hydrolyzes both cyclic nucleotides and accounts for most PDE activities in human myocardium. We report that PDE1 inhibition (IC86430) increases myocardial 26S proteasome activities and UPS proteolytic function in mice. Mice with CryABR120G-based proteinopathy develop HFpEF and show increased myocardial PDE1A expression. PDE1 inhibition markedly attenuates HFpEF, improves mouse survival, increases PKA-mediated proteasome phosphorylation, and reduces myocardial misfolded CryAB. Therefore, PDE1 inhibition induces PKA- and PKG-mediated promotion of proteasomal degradation of misfolded proteins and treats HFpEF caused by CryABR120G, representing a potentially new therapeutic strategy for HFpEF and heart disease with increased proteotoxic stress.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Insuficiência Cardíaca/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Deficiências na Proteostase/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Densitometria , Ecocardiografia , Feminino , Genótipo , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/metabolismo , Hemodinâmica , Humanos , Hidrólise , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Miócitos Cardíacos/metabolismo , Fosforilação , Desnaturação Proteica , Deficiências na Proteostase/fisiopatologia , Ratos
12.
J Mol Cell Cardiol ; 125: 162-173, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30381233

RESUMO

Numerous epidemiological studies have demonstrated that approximately 40% of myocardial infarctions (MI) are associated with heart failure (HF). Resveratrol, a naturally occurring polyphenol, has been shown to be beneficial in the treatment of MI-induced HF in rodent models. However, the mechanism responsible for the effects of resveratrol are poorly understood. Interestingly, resveratrol is known to inhibit cytochrome P450 1B1 (CYP1B1) which is involved in the formation of cardiotoxic hydroxyeicosatetraenoic acid (HETE) metabolites. Therefore, we investigated whether resveratrol could improve MI-induced cardiac remodeling and HF in rats through the inhibition of CYP1B1 and its metabolites. To do this, rats were subjected to either sham surgery or a surgery to ligate the left anterior descending artery to induce a MI and subsequent HF. Three weeks post-surgery, rats with established HF were treated with control diet or administered a diet containing low dose of resveratrol. Our results showed that low dose resveratrol treatment significantly improves % ejection fraction in MI rats and reduces MI-induced left ventricular and atrial remodeling. Furthermore, non-cardiac symptoms of HF such as reduced physical activity improved with low dose resveratrol treatment. Mechanistically, low dose resveratrol treatment of rats with established HF restored levels of fatty acid oxidation and significantly improved cardiac energy metabolism as well as significantly inhibited CYP1B1 and cardiotoxic HETE metabolites induced in MI rats. Overall, the present work provides evidence that low dose resveratrol reduces the severity of MI-induced HF, at least in part, through the inhibition of CYP1B1 and cardiotoxic HETE metabolites.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Infarto do Miocárdio/complicações , Resveratrol/uso terapêutico , Animais , Cromatografia Líquida , Masculino , Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização por Electrospray
13.
Am J Physiol Heart Circ Physiol ; 315(4): H879-H884, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29932770

RESUMO

Despite advancements in therapies for cardiovascular disease and heart failure (HF), the incidence and prevalence of HF are increasing. Previous work has suggested that inhibiting adipose triglyceride lipase (ATGL) in adipose tissue during HF development may assist in the treatment of HF. The ability to specifically target the adipocyte as a potential treatment for HF is a novel approach that could significantly influence the management of HF in the future. Our objectives were to assess the cardiac structural and functional effects of pharmacological inhibition of ATGL in mice with HF, to assess whether ATGL inhibition works in an adipocyte-autonomous manner, and to determine the role that adiposity and glucose homeostasis play in this HF treatment approach. Using a known ATGL inhibitor, atglistatin, as well as mice with germline deletion of adipocyte-specific ATGL, we tested the effectiveness of ATGL inhibition in mice with pressure overload-induced HF. Here, we show that atglistatin can prevent the functional decline in HF and provide evidence that specifically targeting ATGL in the adipocyte is sufficient to prevent worsening of HF. We further demonstrate that the benefit resulting from atglistatin in HF is not dependent on previously suggested improvements in glucose homeostasis, nor are the benefits derived from increased adiposity. Overall, the results of this study suggest that adipocyte-specific pharmacological inhibition of ATGL may represent a novel therapeutic option for HF. NEW & NOTEWORTHY This work shows for the first time that the adipose triglyceride lipase (ATGL)-specific inhibitor atglistatin can prevent worsening heart failure. Furthermore, using mice with adipocyte-specific ATGL ablation, this study demonstrates that ATGL inhibition works in an adipocyte-autonomous manner to ameliorate a functional decline in heart failure. Overall, this work demonstrates that specifically targeting the adipocyte to inhibit ATGL is a potential treatment for heart failure.


Assuntos
Adipócitos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Lipase/antagonistas & inibidores , Lipólise/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Adipócitos/enzimologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Lipase/genética , Lipase/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
Am J Physiol Endocrinol Metab ; 315(4): E511-E519, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29870676

RESUMO

Oral administration of resveratrol attenuates several symptoms associated with the metabolic syndrome, such as impaired glucose homeostasis and hypertension. Recent work has shown that resveratrol can improve glucose homeostasis in obesity via changes in the gut microbiota. Studies involving fecal microbiome transplants (FMTs) suggest that either live gut microbiota or bacterial-derived metabolites from resveratrol ingestion are responsible for producing the observed benefits in recipients. Herein, we show that obese mice receiving FMTs from healthy resveratrol-fed mice have improved glucose homeostasis within 11 days of the first transplant, and that resveratrol-FMTs is more efficacious than oral supplementation of resveratrol for the same duration. The effects of FMTs from resveratrol-fed mice are also associated with decreased inflammation in the colon of obese recipient mice. Furthermore, we show that sterile fecal filtrates from resveratrol-fed mice are sufficient to improve glucose homeostasis in obese mice, demonstrating that nonliving bacterial, metabolites, or other components within the feces of resveratrol-fed mice are sufficient to reduce intestinal inflammation. These postbiotics may be an integral mechanism by which resveratrol improves hyperglycemia in obesity. Resveratrol-FMTs also reduced the systolic blood pressure of hypertensive mice within 2 wk of the first transplant, indicating that the beneficial effects of resveratrol-FMTs may also assist with improving cardiovascular conditions associated with the metabolic syndrome.


Assuntos
Antioxidantes/farmacologia , Glicemia/metabolismo , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , Resveratrol/farmacologia , Animais , Glicemia/efeitos dos fármacos , Pressão Sanguínea , Colo/imunologia , Citocinas/imunologia , Dieta Hiperlipídica , Sacarose Alimentar , Hiperglicemia , Hipertensão , Inflamação , Espectroscopia de Ressonância Magnética , Síndrome Metabólica/imunologia , Camundongos , Obesidade/imunologia
15.
Cardiovasc Res ; 114(10): 1350-1359, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29566148

RESUMO

Aims: Doxorubicin (DOX) is among the most effective chemotherapies used in paediatric cancer patients. However, the clinical utility of DOX is offset by its well-known cardiotoxicity, which often does not appear until later in life. Since hypertension significantly increases the risk of late-onset heart failure in childhood cancer survivors, we investigated whether juvenile DOX exposure impairs the ability to adapt to angiotensin II (Ang II)-induced hypertension later in life and tested a treatment that could prevent this. Methods and results: Five-week-old male mice were administered a low dose of DOX (4 mg/kg) or saline once a week for 3 weeks and then allowed to recover for 5 weeks. Following the 5-week recovery period, mice were infused with Ang II or saline for 2 weeks. In another cohort, mice were fed chow containing 0.4% resveratrol 1 week before, during, and 1 week after the DOX administrations. One week after the last DOX administration, p38 mitogen-activated protein kinase (MAPK) was activated in hearts of DOX-treated mice demonstrating molecular signs of cardiac stress; yet, there was no change in cardiac function between groups. However, DOX-treated mice failed to develop compensatory cardiac hypertrophy in response to Ang II-induced hypertension later in life. Of importance, mice receiving DOX with resveratrol co-administration displayed normalization in p38 MAPK activation in the heart and a restored capacity for cardiac hypertrophy in response to Ang II-induced hypertension. Conclusion: We have developed a juvenile mouse model of DOX-induced cardiotoxicity that displays no immediate overt physiological dysfunction; but, leads to an impaired ability of the heart to adapt to hypertension later in life. We also show that co-administration of resveratrol during DOX treatment was sufficient to normalize molecular markers of cardiotoxicity and restore the ability of the heart to undergo adaptive remodelling in response to hypertension later in life.


Assuntos
Angiotensina II , Doxorrubicina , Cardiopatias/prevenção & controle , Hipertensão/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Resveratrol/farmacologia , Adaptação Fisiológica , Animais , Pressão Sanguínea/efeitos dos fármacos , Cardiotoxicidade , Modelos Animais de Doenças , Ativação Enzimática , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Remodelação Ventricular/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
JACC Basic Transl Sci ; 2(4): 347-354, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30062155

RESUMO

This study sought to determine whether the sodium/glucose cotransporter 2 (SGLT2) inhibitor empagliflozin improved heart failure (HF) outcomes in nondiabetic mice. The EMPA-REG OUTCOME (Empagliflozin, Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients) trial demonstrated that empagliflozin markedly prevented HF and cardiovascular death in subjects with diabetes. However, despite ongoing clinical trials in HF patients without type 2 diabetes, there are no objective and translational data to support an effect of SGLT2 inhibitors on cardiac structure and function, particularly in the absence of diabetes and in the setting of established HF. Male C57Bl/6 mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Following surgery, mice that progressed to HF received either vehicle or empagliflozin for 2 weeks. Cardiac function was then assessed in vivo using echocardiography and ex vivo using isolated working hearts. Although vehicle-treated HF mice experienced a progressive worsening of cardiac function over the 2-week treatment period, this decline was blunted in empagliflozin-treated HF mice. Treatment allocation to empagliflozin resulted in an improvement in cardiac systolic function, with no significant changes in cardiac remodeling or diastolic dysfunction. Moreover, isolated hearts from HF mice treated with empagliflozin displayed significantly improved ex vivo cardiac function compared to those in vehicle-treated controls. Empagliflozin treatment of nondiabetic mice with established HF blunts the decline in cardiac function both in vivo and ex vivo, independent of diabetes. These data provide important basic and translational clues to support the evaluation of SGLT2 inhibitors as a treatment strategy in a broad range of patients with established HF.

17.
Biochim Biophys Acta ; 1862(12): 2199-2210, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27412473

RESUMO

Cellular energy homeostasis is a fundamental process that governs the overall health of the cell and is paramount to cell survival. Central to this is the control of ATP generation and utilization, which is regulated by a complex myriad of enzymatic reactions controlling cellular metabolism. In the cardiomyocyte, ATP generated from substrate catabolism is used for numerous cellular processes including maintaining ionic homeostasis, cell repair, protein synthesis and turnover, organelle turnover, and contractile function. In many instances, cardiovascular disease is associated with impaired cardiac energetics and thus the signalling that regulates pathways involved in cardiomyocyte metabolism may be potential targets for pharmacotherapy designed to help treat cardiovascular disease. An important regulator of cardiomyocyte energy homeostasis is adenosine monophosphate-activated protein kinase (AMPK). AMPK is a serine-threonine kinase that functions primarily as a metabolic sensor to coordinate anabolic and catabolic activities in the cell via the phosphorylation of multiple proteins involved in metabolic pathways. In addition to the direct role that AMPK plays in the regulation of cardiomyocyte metabolism, AMPK can also either directly or indirectly influence other cellular processes such as regulating mitochondrial function, post-translation acetylation, autophagy, mitophagy, endoplasmic reticulum stress, and apoptosis. Thus, AMPK is implicated in the control of a wide variety of cellular processes that can influence cardiomyocyte health and survival. In this review, we will discuss the important role that AMPK plays in regulating cardiac metabolism, as well as the additional cellular processes that may contribute to cardiomyocyte function and survival in the healthy and the diseased heart. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan. F.C. Glatz.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético , Cardiopatias/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Sobrevivência Celular , Cardiopatias/patologia , Humanos , Miócitos Cardíacos/patologia , Fosforilação
18.
Heart Fail Rev ; 21(1): 103-116, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26712328

RESUMO

Heart failure remains an important clinical burden, and mitochondrial dysfunction plays a key role in its pathogenesis. The heart has a high metabolic demand, and mitochondrial function is a key determinant of myocardial performance. In mitochondrial disorders, hypertrophic remodeling is the early pattern of cardiomyopathy with progression to dilated cardiomyopathy, conduction defects and ventricular pre-excitation occurring in a significant proportion of patients. Cardiac dysfunction occurs in approximately a third of patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, a stereotypical example of a mitochondrial disorder leading to a cardiomyopathy. We performed unique comparative ultrastructural and gene expression in a MELAS heart compared with non-failing controls. Our results showed a remarkable increase in mitochondrial inclusions and increased abnormal mitochondria in MELAS cardiomyopathy coupled with variable sarcomere thickening, heterogeneous distribution of affected cardiomyocytes and a greater elevation in the expression of disease markers. Investigation and management of patients with mitochondrial cardiomyopathy should follow the well-described contemporary heart failure clinical practice guidelines and include an important role of medical and device therapies. Directed metabolic therapy is lacking, but current research strategies are dedicated toward improving mitochondrial function in patients with mitochondrial disorders.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Síndrome MELAS , Mitocôndrias/metabolismo , Cardiomiopatias/complicações , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Síndrome MELAS/complicações , Síndrome MELAS/metabolismo , Síndrome MELAS/fisiopatologia , Metabolismo
19.
Diabetes ; 65(1): 85-95, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26224885

RESUMO

Obesity is increasing in prevalence and is strongly associated with metabolic and cardiovascular disorders. The renin-angiotensin system (RAS) has emerged as a key pathogenic mechanism for these disorders; angiotensin (Ang)-converting enzyme 2 (ACE2) negatively regulates RAS by metabolizing Ang II into Ang 1-7. We studied the role of ACE2 in obesity-mediated cardiac dysfunction. ACE2 null (ACE2KO) and wild-type (WT) mice were fed a high-fat diet (HFD) or a control diet and studied at 6 months of age. Loss of ACE2 resulted in decreased weight gain but increased glucose intolerance, epicardial adipose tissue (EAT) inflammation, and polarization of macrophages into a proinflammatory phenotype in response to HFD. Similarly, human EAT in patients with obesity and heart failure displayed a proinflammatory macrophage phenotype. Exacerbated EAT inflammation in ACE2KO-HFD mice was associated with decreased myocardial adiponectin, decreased phosphorylation of AMPK, increased cardiac steatosis and lipotoxicity, and myocardial insulin resistance, which worsened heart function. Ang 1-7 (24 µg/kg/h) administered to ACE2KO-HFD mice resulted in ameliorated EAT inflammation and reduced cardiac steatosis and lipotoxicity, resulting in normalization of heart failure. In conclusion, ACE2 plays a novel role in heart disease associated with obesity wherein ACE2 negatively regulates obesity-induced EAT inflammation and cardiac insulin resistance.


Assuntos
Tecido Adiposo/imunologia , Dieta Hiperlipídica , Insuficiência Cardíaca/genética , Macrófagos/imunologia , Miocárdio/metabolismo , Obesidade/genética , Peptidil Dipeptidase A/deficiência , Pericárdio/imunologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/metabolismo , Angiotensina I/farmacologia , Enzima de Conversão de Angiotensina 2 , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Western Blotting , Ensaio de Imunoadsorção Enzimática , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Coração/fisiopatologia , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Inflamação/genética , Inflamação/imunologia , Resistência à Insulina/genética , Camundongos , Camundongos Knockout , Obesidade/imunologia , Obesidade/fisiopatologia , Estresse Oxidativo , Fragmentos de Peptídeos/farmacologia , Peptidil Dipeptidase A/genética , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Volume Sistólico , Fator de Necrose Tumoral alfa/imunologia , Vasodilatadores/farmacologia , Aumento de Peso/genética
20.
Sci Rep ; 5: 18132, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26638758

RESUMO

Iron-overload cardiomyopathy is a prevalent cause of heart failure on a world-wide basis and is a major cause of mortality and morbidity in patients with secondary iron-overload and genetic hemochromatosis. We investigated the therapeutic effects of resveratrol in acquired and genetic models of iron-overload cardiomyopathy. Murine iron-overload models showed cardiac iron-overload, increased oxidative stress, altered Ca(2+) homeostasis and myocardial fibrosis resulting in heart disease. Iron-overload increased nuclear and acetylated levels of FOXO1 with corresponding inverse changes in SIRT1 levels in the heart corrected by resveratrol therapy. Resveratrol, reduced the pathological remodeling and improved cardiac function in murine models of acquired and genetic iron-overload at varying stages of iron-overload. Echocardiography and hemodynamic analysis revealed a complete normalization of iron-overload mediated diastolic and systolic dysfunction in response to resveratrol therapy. Myocardial SERCA2a levels were reduced in iron-overloaded hearts and resveratrol therapy restored SERCA2a levels and corrected altered Ca(2+) homeostasis. Iron-mediated pro-oxidant and pro-fibrotic effects in human and murine cardiomyocytes and cardiofibroblasts were suppressed by resveratrol which correlated with reduction in iron-induced myocardial oxidative stress and myocardial fibrosis. Resveratrol represents a clinically and economically feasible therapeutic intervention to reduce the global burden from iron-overload cardiomyopathy at early and chronic stages of iron-overload.


Assuntos
Cardiomiopatias/complicações , Cardiomiopatias/tratamento farmacológico , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico , Modelos Genéticos , Estilbenos/uso terapêutico , Animais , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Proteínas Ligadas por GPI , Terapia Genética , Proteína da Hemocromatose , Humanos , Sobrecarga de Ferro/fisiopatologia , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Oxidantes/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Resveratrol , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Estilbenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA