Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 451: 139205, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38653102

RESUMO

Sodium alginate hydrogel beads and sodium alginate/gellan gum composite hydrogel beads crosslinked by calcium chloride were prepared with different alginate concentrations (3-20 mg·mL-1). Additionally, a simple method for growing CaCO3in situ on the hydrogel to create novel inorganic-organic hybrid hydrogel beads was presented. FT-IR analysis revealed the involvement of hydrogen bonding and electrostatic interactions in bead formation. Swelling behavior in acidic conditions showed a maximum of 13 g/g for composite hydrogels and CaCO3-incorporated hybrid hydrogels. Lactoferrin encapsulation efficiency within these hydrogels ranged from 44.9 to 56.6%. In vitro release experiments demonstrated that these hydrogel beads withstand harsh gastric environments with <16% cumulative release of lactoferrin, achieving controlled release in intestinal surroundings. While composite sodium alginate/gellan gum beads exhibited slower gastrointestinal lactoferrin digestion, facile synthesis and pH responsiveness of CaCO3-incorporated hybrid hydrogel also provide new possibilities for future studies to construct a novel inorganic-organic synergetic system for intestinal-specific oral delivery.


Assuntos
Alginatos , Carbonato de Cálcio , Hidrogéis , Lactoferrina , Alginatos/química , Carbonato de Cálcio/química , Hidrogéis/química , Lactoferrina/química , Lactoferrina/administração & dosagem , Humanos , Administração Oral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio
2.
Materials (Basel) ; 17(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473523

RESUMO

Particle assembly is a promising technique to create functional materials and devices from nanoscale building blocks. However, the control of particle arrangement and orientation is challenging and requires careful design of the assembly methods and conditions. In this study, the static and dynamic methods of particle assembly are reviewed, focusing on their applications in biomaterial sciences. Static methods rely on the equilibrium interactions between particles and substrates, such as electrostatic, magnetic, or capillary forces. Dynamic methods can be associated with the application of external stimuli, such as electric fields, magnetic fields, light, or sound, to manipulate the particles in a non-equilibrium state. This study discusses the advantages and limitations of such methods as well as nanoarchitectonic principles that guide the formation of desired structures and functions. It also highlights some examples of biomaterials and devices that have been fabricated by particle assembly, such as biosensors, drug delivery systems, tissue engineering scaffolds, and artificial organs. It concludes by outlining the future challenges and opportunities of particle assembly for biomaterial sciences. This review stands as a crucial guide for scholars and professionals in the field, fostering further investigation and innovation. It also highlights the necessity for continuous research to refine these methodologies and devise more efficient techniques for nanomaterial synthesis. The potential ramifications on healthcare and technology are substantial, with implications for drug delivery systems, diagnostic tools, disease treatments, energy storage, environmental science, and electronics.

3.
Int J Biol Macromol ; 259(Pt 1): 129069, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38161005

RESUMO

Biomaterials composed of food polysaccharides are of great interest for future biomedical applications due to their great biocompatibility, tunable mechanical properties, and complex architectural designs that play a crucial role in the modulation of cell adhesion and proliferation. In this work, a facile approach was designed to obtain novel 3D alginate-CaCO3 hybrid hydrogel particles in situ. Controlling the gel concentration from 3 to 20 mg·mL-1 allows us to control the alginate-CaCO3 hydrogel particles' size and density (size variation from 1.86 to 2.34 mm and density from 1.22 to 1.29 mg/mm3). This variable also has a considerable influence on the mineralization process resulting in CaCO3 particles with varied sizes and amounts within the hydrogel beads. The measurements of Young's modulus showed that the inclusion of CaCO3 particles into the alginate hydrogel improved its mechanical properties, and Young's modulus of these hybrid hydrogel particles had a linear relationship with alginate content and hydrogel particle size. Cell experiments indicated that alginate-CaCO3 hybrid hydrogel particles can support osteoblastic cell proliferation and growth. In particular, the amount of hydroxyapatite deposition on the cell membrane significantly increased after the treatment of cells with hybrid hydrogel particles, up to 20-fold. This work offers a strategy for constructing inorganic particle-doped polysaccharide hybrid hydrogel scaffolds that provide the potential to support cell growth.


Assuntos
Alginatos , Hidrogéis , Hidrogéis/farmacologia , Hidrogéis/química , Alginatos/farmacologia , Alginatos/química , Materiais Biocompatíveis/farmacologia , Durapatita , Proliferação de Células , Engenharia Tecidual
4.
Biomacromolecules ; 24(11): 4532-4552, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37812143

RESUMO

Efficient cellular alignment in biomaterials presents a considerable challenge, demanding the refinement of appropriate material morphologies, while ensuring effective cell-surface interactions. To address this, biomaterials are continuously researched with diverse coatings, hydrogels, and polymeric surfaces. In this context, we investigate the influence of physicochemical parameters on the architecture of fibrillar hydrogels that significantly orient the topography of flexible hydrogel substrates, thereby fostering cellular adhesion and spatial organization. Our Review comprehensively assesses various techniques for aligning polymer fibrils within hydrogels, specifically interventions applied during and after the cross-linking process. These methodologies include mechanical strains, precise temperature modulation, controlled fluidic dynamics, and chemical modulators, as well as the use of magnetic and electric fields. We highlight the intrinsic appeal of these methodologies in fabricating cell-aligning interfaces and discuss their potential implications within the fields of biomaterials and tissue engineering, particularly concerning the pursuit of optimal cellular alignment.


Assuntos
Hidrogéis , Engenharia Tecidual , Engenharia Tecidual/métodos , Hidrogéis/farmacologia , Materiais Biocompatíveis/farmacologia , Polímeros/farmacologia , Adesão Celular
5.
Pharmaceutics ; 15(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37513999

RESUMO

Magnetic systems have always been considered as attractive due to their remarkable versatility [...].

6.
Adv Healthc Mater ; 12(28): e2301025, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37273241

RESUMO

The importance of the clearance of dead cells is shown to have a regulatory role for normal tissue homeostasis and for the modulation of immune responses. However, how mechanobiological properties of dead cells affect efferocytosis remains largely unknown. Here, it is reported that the Young's modulus of cancer cells undergoing ferroptosis is reduced. To modulate their Young's modulus a layer-by-layer (LbL) nanocoating is developed. Scanning electron and fluorescence microscopy confirm coating efficiency of ferroptotic cells while atomic force microscopy reveals encapsulation of the dead cells increases their Young's modulus dependent on the number of applied LbL layers which increases their efferocytosis by primary macrophages. This work demonstrates the crucial role of mechanobiology of dead cells in regulating their efferocytosis by macrophages which can be exploited for the development of novel therapeutic strategies for diseases where modulation of efferocytosis can be potentially beneficial and for the design of drug delivery systems for cancer therapy.


Assuntos
Neoplasias , Fagocitose , Microscopia de Força Atômica , Macrófagos , Neoplasias/tratamento farmacológico
7.
Front Chem ; 11: 1078840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36762189

RESUMO

Hybrid materials or hybrids incorporating organic and inorganic constituents are emerging as a very potent and promising class of materials due to the diverse but complementary nature of their properties. This complementarity leads to a perfect synergy of properties of the desired materials and products as well as to an extensive range of their application areas. Recently, we have overviewed and classified hybrid materials describing inorganics-in-organics in Part-I (Saveleva, et al., Front. Chem., 2019, 7, 179). Here, we extend that work in Part-II describing organics-on-inorganics, i.e., inorganic materials modified by organic moieties, their structure and functionalities. Inorganic constituents comprise of colloids/nanoparticles and flat surfaces/matrices comprise of metallic (noble metal, metal oxide, metal-organic framework, magnetic nanoparticles, alloy) and non-metallic (minerals, clays, carbons, and ceramics) materials; while organic additives can include molecules (polymers, fluorescence dyes, surfactants), biomolecules (proteins, carbohydtrates, antibodies and nucleic acids) and even higher-level organisms such as cells, bacteria, and microorganisms. Similarly to what was described in Part-I, we look at similar and dissimilar properties of organic-inorganic materials summarizing those bringing complementarity and composition. A broad range of applications of these hybrid materials is also presented whose development is spurred by engaging different scientific research communities.

8.
Adv Healthc Mater ; 12(8): e2201726, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36468909

RESUMO

This is the first comprehensive study of the impact of biodegradation on the structure, surface potential, mechanical and piezoelectric properties of poly(3-hydroxybutyrate) (PHB) scaffolds supplemented with reduced graphene oxide (rGO) as well as cell behavior under static and dynamic mechanical conditions. There is no effect of the rGO addition up to 1.0 wt% on the rate of enzymatic biodegradation of PHB scaffolds for 30 d. The biodegradation of scaffolds leads to the depolymerization of the amorphous phase, resulting in an increase in the degree of crystallinity. Because of more regular dipole order in the crystalline phase, surface potential of all fibers increases after the biodegradation, with a maximum (361 ± 5 mV) after the addition of 1 wt% rGO into PHB as compared to pristine PHB fibers. By contrast, PHB-0.7rGO fibers manifest the strongest effective vertical (0.59 ± 0.03 pm V-1 ) and lateral (1.06 ± 0.02 pm V-1 ) piezoresponse owing to a greater presence of electroactive ß-phase. In vitro assays involving primary human fibroblasts reveal equal biocompatibility and faster cell proliferation on PHB-0.7rGO scaffolds compared to pure PHB and nonpiezoelectric polycaprolactone scaffolds. Thus, the developed biodegradable PHB-rGO scaffolds with enhanced piezoresponse are promising for tissue-engineering applications.


Assuntos
Hidroxibutiratos , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Ácido 3-Hidroxibutírico , Hidroxibutiratos/química , Engenharia Tecidual/métodos , Poliésteres/química
9.
Chem Commun (Camb) ; 59(7): 807-835, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36472384

RESUMO

Transferring the layer-by-layer (LbL) coating approach from planar surfaces to spherical templates and subsequently dissolving these templates leads to the fabrication of polyelectrolyte multilayer capsules. The versatility of the coatings of capsules and their flexibility upon bringing in virtually any material into the coatings has quickly drawn substantial attention. Here, we provide an overview of the main developments in this field, highlighting the trends in the last decade. In the beginning, various methods of encapsulation and release are discussed followed by a broad range of applications, which were developed and explored. We also outline the current trends, where the range of applications is continuing to grow, including addition of whole new and different application areas.

10.
Nanoscale ; 14(43): 15964-16002, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36278502

RESUMO

Nanoarchitectonics, like architectonics, allows the design and building of structures, but at the nanoscale. Unlike those in architectonics, and even macro-, micro-, and atomic-scale architectonics, the assembled structures at the nanoscale do not always follow the projected design. In fact, they do follow the projected design but only for self-assembly processes producing structures with perfect order. Here, we look at nanoarchitectonics allowing the building of nanostructures without a perfect arrangement of building blocks. Here, fabrication of structures from molecules, polymers, nanoparticles, and nanosheets to polymer brushes, layer-by-layer assembly structures, and hydrogels through self-assembly processes is discussed, where perfect order is not necessarily the aim to be achieved. Both planar substrate and spherical template-based assemblies are discussed, showing the challenging nature of research in this field and the usefulness of such structures for numerous applications, which are also discussed here.

11.
Pharmaceutics ; 14(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35745705

RESUMO

Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.

12.
Pharmaceutics ; 14(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35631494

RESUMO

Because free therapeutic drug molecules often have adverse effects on normal tissues, deliver scanty drug concentrations and exhibit a potentially low efficacy at pathological sites, various drug carriers have been developed for preclinical and clinical trials. Their physicochemical and toxicological properties are the subject of extensive research. Inorganic calcium carbonate particles are promising candidates as drug delivery carriers owning to their hardness, porous internal structure, high surface area, distinctive pH-sensitivity, low degradability, etc, while soft organic alginate hydrogels are also widely used because of their special advantages such as a high hydration, bio-adhesiveness, and non-antigenicity. Here, we review these two distinct substances as well as hybrid structures encompassing both types of carriers. Methods of their synthesis, fundamental properties and mechanisms of formation, and their respective applications are described. Furthermore, we summarize and compare similarities versus differences taking into account unique advantages and disadvantages of these drug delivery carriers. Moreover, rational combination of both carrier types due to their performance complementarity (yin-&yang properties: in general, yin is referred to for definiteness as hard, and yang is broadly taken as soft) is proposed to be used in the so-called hybrid carriers endowing them with even more advanced properties envisioned to be attractive for designing new drug delivery systems.

13.
Biomater Adv ; 133: 112632, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35034815

RESUMO

Hydrogels, which are versatile three-dimensional structures containing polymers and water, are very attractive for use in biomedical fields, but they suffer from rather weak mechanical properties. In this regard, biocompatible particles can be used to enhance their mechanical properties. The possibility of loading such particles with drugs (e.g. enzymes) makes them a particularly useful component in hydrogels. In this study, micro/nanoparticles containing various ratios of Ca2+/Mg2+ with sizes ranging from 1 to 8 µm were prepared and mixed with gellan gum (GG) solution to study the in-situ formation of hydrogel-particle composites. The particles provide multiple functionalities: 1) they efficiently crosslink GG to induce hydrogel formation through the release of the divalent cations (Ca2+/Mg2+) known to bind to GG polymer chains; 2) they enhance mechanical properties of the hydrogel from 2 up to 100 kPa; 3) the samples most efficiently promoting cell growth were found to contain two types of minerals: vaterite and hydroxymagnesite, which enhanced cells proliferation and hydroxyapatite formation. The results demonstrate that such composite materials are attractive candidates for applications in bone regeneration.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Materiais Biocompatíveis/farmacologia , Regeneração Óssea , Carbonato de Cálcio/química , Durapatita/farmacologia , Hidrogéis/farmacologia
14.
Food Chem Toxicol ; 157: 112590, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34601042

RESUMO

Ribosome-inactivating proteins (RIPs) are capable of removing a specific adenine from 28S ribosomal RNA, thus inhibiting protein biosynthesis in an irreversible manner. In this study, recombinant OsRIP1, a type 1 RIP from rice (Oryza sativa L.), was investigated for its anti-proliferative properties. Human cervical cancer HeLa cells were incubated in the presence of OsRIP1 for 24-72 h. OsRIP1 treatment yielded an anti-proliferation response of the HeLa cells and resulted in apoptotic-like blebbing of the plasma membrane without causing DNA fragmentation. OsRIP1 labeled with FITC accumulated at the cell surface. Pull-down assays identified ASPP1 (Apoptosis-Stimulating Protein of p53 1) and IFITM3 (interferon-induced transmembrane protein 3) as potential interaction partners for OsRIP1. Transcript levels for several critical genes related to different signaling pathways were quantified by RT-qPCR. OsRIP1 provoked HeLa cells to undergo caspase-independent cell death, associated with a significant transcriptional upregulation of the apoptotic gene PUMA, interferon regulatory factor 1 (IRF1) and the autophagy-related marker LC3. No changes in caspase activities were observed. Together, these data suggest that apoptotic-like events were involved in OsRIP1-driven caspase-independent cell death that might trigger the IRF1 signaling pathway and LC3-mediated autophagy.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Plantas/farmacologia , Saporinas/farmacologia , Western Blotting , Caspases/metabolismo , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Eletroforese em Gel de Poliacrilamida , Cromatografia Gasosa-Espectrometria de Massas , Células HeLa/efeitos dos fármacos , Humanos , Oryza/química , Reação em Cadeia da Polimerase em Tempo Real
15.
Macromol Biosci ; 21(12): e2100266, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34608754

RESUMO

In current orthopedic practice, bone implants used to-date often exhibit poor osteointegration, impaired osteogenesis, and, eventually, implant failure. Actively pursued strategies for tissue engineering could overcome these shortcomings by developing new hybrid materials with bioinspired structure and enhanced regenerative potential. In this study, the osteogenic and therapeutic potential of bioactive vaterite is investigated as a functional component of a fibrous polymeric scaffold for bone regeneration. Hybrid two-layered polycaprolactone scaffolds coated with vaterite (PCL/CaCO3 ) are studied during their 28-days implantation period in a rat femur defect. After this period, the study of tissue formation in the defected area is performed by the histological study of femur cross-sections. Immobilization of alkaline phosphatase (ALP) into PCL/CaCO3 scaffolds accelerates new bone tissue formation and defect repair. PCL/CaCO3 and PCL/CaCO3 /ALP scaffolds reveal 37.3% and 62.9% areas, respectively, filled with newly formed bone tissue in cross-sections compared to unmineralized PCL scaffold (17.5%). Bone turnover markers are monitored on the 7th and 28th days after implantation and reveal an increase of osteocalcin level for both PCL/CaCO3 and PCL/CaCO3 /ALP compared with PCL indicating the activation of osteogenesis. These findings indicate that vaterite, as an osteoconductive component of polymeric scaffolds, promotes osteogenesis, supports angiogenesis, and facilitates bone defect repair.


Assuntos
Substitutos Ósseos/química , Materiais Revestidos Biocompatíveis/química , Fêmur , Osteogênese , Poliésteres/química , Alicerces Teciduais/química , Animais , Fêmur/lesões , Fêmur/metabolismo , Masculino , Ratos
16.
J Mater Chem B ; 9(39): 8308-8320, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518864

RESUMO

To develop materials for drug delivery and tissue engineering and to study their efficiency with respect to ossification, it is necessary to apply physicochemical and biological analyses. The major challenge is labor-intensive data mining during synthesis and the reproducibility of the obtained data. In this work, we investigated the influence of time and temperature on the reaction yield, the reaction rate, and the size, shape, and phase of the obtained product in the completely controllable synthesis of calcium carbonate. We show that calcium carbonate particles can be synthesized in large quantities, i.e., in gram quantities, which is a substantial advantage over previously reported synthesis methods. We demonstrated that the presence of vaterite particles can dramatically stimulate hydroxyapatite (HA) production by providing the continued release of the main HA component - calcium ions - depending on the following particle parameters: size, shape, and phase. To understand the key parameters influencing the efficiency of HA production by cells, we created a predictive model by means of principal component analysis. We found that smaller particles in the vaterite state are best suited for HA growth (HA growth was 8 times greater than that in the control). We also found that the reported dependence of cell adhesion on colloidal particles can be extended to other types of particles that contain calcium ions.


Assuntos
Carbonato de Cálcio/química , Carbonato de Cálcio/síntese química , Hidroxiapatitas/metabolismo , Células 3T3 , Animais , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Hidroxiapatitas/química , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Engenharia Tecidual
17.
Mater Sci Eng C Mater Biol Appl ; 122: 111909, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33641905

RESUMO

As the next generation of materials for bone reconstruction, we propose a multifunctional bioactive platform based on biodegradable piezoelectric polyhydroxybutyrate (PHB) fibrous scaffolds for tissue engineering with drug delivery capabilities. To use the entire surface area for local drug delivery, the scaffold surface was uniformly biomineralized with biocompatible calcium carbonate (CaCO3) microparticles in a vaterite-calcite polymorph mixture. CaCO3-coated PHB scaffolds demonstrated a similar elastic modulus compared to that of pristine one. However, reduced tensile strength and failure strain of 31% and 67% were observed, respectively. The biomimetic immobilization of enzyme alkaline phosphatase (ALP) and glycopeptide antibiotic vancomycin (VCM) preserved the CaCO3-mineralized PHB scaffold morphology and resulted in partial recrystallization of vaterite to calcite. In comparison to pristine scaffolds, the loading efficiency of CaCO3-mineralized PHB scaffolds was 4.6 and 3.5 times higher for VCM and ALP, respectively. Despite the increased number of cells incubated with ALP-immobilized scaffolds (up to 61% for non-mineralized and up to 36% for mineralized), the CaCO3-mineralized PHB scaffolds showed cell adhesion; those containing both VCM and ALP molecules had the highest cell density. Importantly, no toxicity for pre-osteoblastic cells was detected, even in the VCM-immobilized scaffolds. In contrast with antibiotic-free scaffolds, the VCM-immobilized ones had a pronounced antibacterial effect against gram-positive bacteria Staphylococcus aureus. Thus, piezoelectric hybrid PHB scaffolds modified with CaCO3 layers and immobilized VCM/ALP are promising materials in bone tissue engineering.


Assuntos
Preparações Farmacêuticas , Engenharia Tecidual , Antibacterianos/farmacologia , Carbonato de Cálcio , Alicerces Teciduais
18.
J Mater Chem B ; 8(41): 9576-9588, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33005912

RESUMO

While DNA and messenger RNA (mRNA) based therapies are currently changing the biomedical field, the delivery of genetic materials remains the key problem preventing the wide introduction of these methods into clinical practice. Therefore, the creation of new methods for intracellular gene delivery, particularly to hard-to-transfect, clinically relevant cell populations is a pressing issue. Here, we report on the design of a novel approach to format 50-150 nm calcium carbonate particles in the vaterite state and using them as a template for polymeric core-shell nanoparticles. We apply such core-shell nanoparticles as safe and efficient carriers for mRNA and pDNA. We prove that such nanocarriers are actively internalized by up to 99% of primary T-lymphocytes and exert minimal toxicity with the viability of >90%. We demonstrate that these nanocarriers mediate more efficient transfection compared with the standard electroporation method (90% vs. 51% for mRNA and 62% vs. 39% for plasmid DNA) in primary human T-lymphocytes as a model of the hard to transfect type that is widely used in gene and cell therapy approaches. Importantly, these polymeric nanocarriers can be used in serum containing basic culture medium without special conditions and equipment, thus having potential for being introduced in clinical development. As a result, we have provided proof-of-principle that our nanosized containers represent a promising universal non-viral platform for efficient and safe gene delivery.


Assuntos
Técnicas de Transferência de Genes , Nanopartículas/química , Polieletrólitos/química , Células Cultivadas , DNA/administração & dosagem , DNA/genética , Humanos , Plasmídeos/administração & dosagem , Plasmídeos/genética , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , Linfócitos T/metabolismo , Transfecção/métodos
19.
Macromol Biosci ; 20(7): e2000081, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32484303

RESUMO

Encapsulation of enzymes allows to preserve their biological activities in various environmental conditions, such as exposure to elevated temperature or to proteases. This is particularly relevant for in vivo applications, where proteases represent a severe obstacle to maintaining the activity of enzymes. Polyelectrolyte multilayer capsules are suitable for enzyme encapsulation, where CaCO3 particles and temperature-dependent capsule formation are the best templates and the most adequate method, respectively. In this work, these two areas are combined and, ALP (alkaline phosphatase), which is a robust and therapeutically relevant enzyme, is encapsulated into thermally shrunk polyelectrolyte multilayer (PDADMAC/PSS)4 capsules templated on calcium carbonate particles (original average diameter: ≈3.5 µm). The activity of the encapsulated enzyme and the optimal temperature range for encapsulation are investigated. The enzymatic activity is almost four times higher upon encapsulation when the temperature range for encapsulation is situated just above the glass transition temperature (40 °C), while its optimal conditions are dictated, on the one hand, by the enzyme activity (better at lower temperatures) and, on the other hand, by the size and mechanical properties of capsules (better at higher temperatures).


Assuntos
Fosfatase Alcalina/metabolismo , Carbonato de Cálcio/química , Polieletrólitos/química , Temperatura , Cápsulas , Microscopia de Força Atômica , Tamanho da Partícula , Polietilenos/química , Compostos de Amônio Quaternário/química
20.
Mar Drugs ; 18(6)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498225

RESUMO

Whey protein isolate (WPI) is a by-product from the production of cheese and Greek yoghurt comprising ß-lactoglobulin (ß-lg) (75%). Hydrogels can be produced from WPI solutions through heating; hydrogels can be sterilized by autoclaving. WPI hydrogels have shown cytocompatibility and ability to enhance proliferation and osteogenic differentiation of bone-forming cells. Hence, they have promise in the area of bone tissue regeneration. In contrast to commonly used ceramic minerals for bone regeneration, a major advantage of hydrogels is the ease of their modification by incorporating biologically active substances such as enzymes. Calcium carbonate (CaCO3) is the main inorganic component of the exoskeletons of marine invertebrates. Two polymorphs of CaCO3, calcite and aragonite, have shown the ability to promote bone regeneration. Other authors have reported that the addition of magnesium to inorganic phases has a beneficial effect on bone-forming cell growth. In this study, we employed a biomimetic, marine-inspired approach to mineralize WPI hydrogels with an inorganic phase consisting of CaCO3 (mainly calcite) and CaCO3 enriched with magnesium using the calcifying enzyme urease. The novelty of this study lies in both the enzymatic mineralization of WPI hydrogels and enrichment of the mineral with magnesium. Calcium was incorporated into the mineral formed to a greater extent than magnesium. Increasing the concentration of magnesium in the mineralization medium led to a reduction in the amount and crystallinity of the mineral formed. Biological studies revealed that mineralized and unmineralized hydrogels were not cytotoxic and promoted cell viability to comparable extents (approximately 74% of standard tissue culture polystyrene). The presence of magnesium in the mineral formed had no adverse effect on cell viability. In short, WPI hydrogels, both unmineralized and mineralized with CaCO3 and magnesium-enriched CaCO3, show potential as biomaterials for bone regeneration.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Hidrogéis/síntese química , Hidrogéis/farmacologia , Proteínas do Soro do Leite/farmacologia , Animais , Materiais Biocompatíveis/metabolismo , Carbonato de Cálcio , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Hidrogéis/química , Magnésio , Camundongos , Minerais/metabolismo , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Proteínas do Soro do Leite/química , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA