Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 326(6): H1424-H1445, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639742

RESUMO

Diastolic dysfunction and delayed ventricular repolarization are typically observed in the elderly, but whether these defects are intimately associated with the progressive manifestation of the aging myopathy remains to be determined. In this regard, aging in experimental animals is coupled with increased late Na+ current (INa,L) in cardiomyocytes, raising the possibility that INa,L conditions the modality of electrical recovery and myocardial relaxation of the aged heart. For this purpose, aging male and female wild-type (WT) C57Bl/6 mice were studied together with genetically engineered mice with phosphomimetic (gain of function, GoF) or ablated (loss of function, LoF) mutations of the sodium channel Nav1.5 at Ser571 associated with, respectively, increased and stabilized INa,L. At ∼18 mo of age, WT mice developed prolonged duration of the QT interval of the electrocardiogram and impaired diastolic left ventricular (LV) filling, defects that were reversed by INa,L inhibition. Prolonged repolarization and impaired LV filling occurred prematurely in adult (∼5 mo) GoF mutant mice, whereas these alterations were largely attenuated in aging LoF mutant animals. Ca2+ transient decay and kinetics of myocyte shortening/relengthening were delayed in aged (∼24 mo) WT myocytes, with respect to adult cells. In contrast, delayed Ca2+ transients and contractile dynamics occurred at adult stage in GoF myocytes and further deteriorated in old age. Conversely, myocyte mechanics were minimally affected in aging LoF cells. Collectively, these results document that Nav1.5 phosphorylation at Ser571 and the late Na+ current modulate the modality of myocyte relaxation, constituting the mechanism linking delayed ventricular repolarization and diastolic dysfunction.NEW & NOTEWORTHY We have investigated the impact of the late Na current (INa,L) on cardiac and myocyte function with aging by using genetically engineered animals with enhanced or stabilized INa,L, due to phosphomimetic or phosphoablated mutations of Nav1.5. Our findings support the notion that phosphorylation of Nav1.5 at Ser571 prolongs myocardial repolarization and impairs diastolic function, contributing to the manifestations of the aging myopathy.


Assuntos
Envelhecimento , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Canal de Sódio Disparado por Voltagem NAV1.5 , Animais , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Envelhecimento/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Feminino , Fosforilação , Masculino , Camundongos , Potenciais de Ação , Serina/metabolismo , Mutação , Função Ventricular Esquerda , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/genética , Fatores Etários , Sinalização do Cálcio , Contração Miocárdica , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Cardiomiopatias/genética , Cardiomiopatias/patologia
2.
Am J Physiol Heart Circ Physiol ; 322(6): H975-H993, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35394857

RESUMO

Voltage-gated sodium channels (VGSCs) are macromolecular assemblies composed of a number of proteins regulating channel conductance and properties. VGSCs generate Na+ current (INa) in myocytes and play fundamental roles in excitability and impulse conduction in the heart. Moreover, VGSCs condition mechanical properties of the myocardium, a process that appears to involve the late component of INa. Variants in the gene SCN1B, encoding the VGSC ß1- and ß1B-subunits, result in inherited neurological disorders and cardiac arrhythmias. But the precise contributions of ß1/ß1B-subunits and VGSC integrity to the overall function of the adult heart remain to be clarified. For this purpose, adult mice with cardiac-restricted, inducible deletion of Scn1b (conditional knockout, cKO) were studied. Myocytes from cKO mice had increased densities of fast (+20%)- and slow (+140%)-inactivating components of INa, with respect to control cells. By echocardiography and invasive hemodynamics, systolic function was preserved in cKO mice, but diastolic properties and ventricular compliance were compromised, with respect to control animals. Importantly, inhibition of late INa with GS967 normalized left ventricular filling pattern and isovolumic relaxation time in cKO mice. At the cellular level, cKO myocytes presented delayed kinetics of Ca2+ transients and cell mechanics, defects that were corrected by inhibition of INa. Collectively, these results document that VGSC ß1/ß1B-subunits modulate electrical and mechanical function of the heart by regulating, at least in part, Na+ influx in cardiomyocytes.NEW & NOTEWORTHY We have investigated the consequences of deletion of Scn1b, the gene encoding voltage-gated sodium channel ß1-subunits, on myocyte and cardiac function. Our findings support the notion that Scn1b expression controls properties of Na+ influx and Ca2+ cycling in cardiomyocytes affecting the modality of cell contraction and relaxation. These effects at the cellular level condition electrical recovery and diastolic function in vivo, substantiating the multifunctional role of ß1-subunits in the physiology of the heart.


Assuntos
Sódio , Canais de Sódio Disparados por Voltagem , Potenciais de Ação , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Diástole , Camundongos , Miócitos Cardíacos/metabolismo , Sódio/metabolismo , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/genética , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA