Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39065408

RESUMO

Poly-γ-glutamic acid (γ-PGA) is a carboxylic-acid-rich, bio-derived, water-soluble, edible, hydrating, non-immunogenic polymer produced naturally by several microorganisms. Here, we re-emphasise the ability of Bacillus subtilis natto to naturally produce γ-PGA on whole seaweed, as well as for the yields and chemical properties of the material to be affected by the presence of Mn(2+). Hyaluronic acid (HA) is an extracellular glycosaminoglycan which presents a high concentration of carboxylic acid and hydroxyl groups, being key in fulfilling numerous applications. Currently, there are strong environmental (solvent use), social (non-vegan extraction), and economic factors pushing for the biosynthesis of this material through prokaryotic microorganisms, which is not yet scalable or sustainable. Our study aimed to investigate an innovative raw material which can combine both superior hygroscopicity and UV protection to the cosmetic industry. Comparable hydration effect of commercially available γ-PGA to conventional moisturising agents (HA and glycerol) was observed; however, greater hydration capacity was observed from seaweed-derived γ-PGA. Herewith, successful incorporation of seaweed-derived γ-PGA (0.2-2 w/v%) was achieved for several model cream systems with absorbances reported at 300 and 400 nm. All γ-PGA-based creams displayed shear thinning behaviour as the viscosity decreased, following increasing shear rates. Although the use of commercial γ-PGA within creams did not suggest a significant effect in rheological behaviour, this was confirmed to be a result of the similar molecular weight. Seaweed-derived γ-PGA cream systems did not display any negative effect on model HaCaT keratinocytes by means of in vitro MTT analysis.

2.
Environ Sci Ecotechnol ; 20: 100407, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38544950

RESUMO

Mismanaged plastics, upon entering the environment, undergo degradation through physicochemical and/or biological processes. This process often results in the formation of microplastics (MPs), the most prevalent form of plastic debris (<1 mm). MPs pose severe threats to aquatic and terrestrial ecosystems, necessitating innovative strategies for effective remediation. Some photosynthetic microorganisms can degrade MPs but there lacks a comprehensive review. Here we examine the specific role of photoautotrophic microorganisms in water and soil environments for the biodegradation of plastics, focussing on their unique ability to grow persistently on diverse polymers under sunlight. Notably, these cells utilise light and CO2 to produce valuable compounds such as carbohydrates, lipids, and proteins, showcasing their multifaceted environmental benefits. We address key scientific questions surrounding the utilisation of photosynthetic microorganisms for MPs and nanoplastics (NPs) bioremediation, discussing potential engineering strategies for enhanced efficacy. Our review highlights the significance of alternative biomaterials and the exploration of strains expressing enzymes, such as polyethylene terephthalate (PET) hydrolases, in conjunction with microalgal and/or cyanobacterial metabolisms. Furthermore, we delve into the promising potential of photo-biocatalytic approaches, emphasising the coupling of plastic debris degradation with sunlight exposure. The integration of microalgal-bacterial consortia is explored for biotechnological applications against MPs and NPs pollution, showcasing the synergistic effects in wastewater treatment through the absorption of nitrogen, heavy metals, phosphorous, and carbon. In conclusion, this review provides a comprehensive overview of the current state of research on the use of photoautotrophic cells for plastic bioremediation. It underscores the need for continued investigation into the engineering of these microorganisms and the development of innovative approaches to tackle the global issue of plastic pollution in aquatic and terrestrial ecosystems.

3.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203673

RESUMO

Delivery systems for biologically active substances such as proanthocyanidins (PCANs), produced in the form of electrospun nonwoven through the electrospinning method, were designed using a polymeric blend of poly(L-lactide-co-glycolide) (PLGA)and poly[(R,S)-3-hydroxybutyrate] ((R,S)-PHB). The studies involved the structural and thermal characteristics of the developed electrospun three-dimensional fibre matrices unloaded and loaded with PCANs. In the next step, the hydrolytic degradation tests of these systems were performed. The release profile of PCANs from the electrospun nonwoven was determined with the aid of UV-VIS spectroscopy. Approximately 30% of the PCANs were released from the tested electrospun nonwoven during the initial 15-20 days of incubation. The chemical structure of water-soluble oligomers that were formed after the hydrolytic degradation of the developed delivery system was identified through electrospray ionization mass spectrometry. Oligomers of lactic acid and OLAGA oligocopolyester, as well as oligo-3-hydroxybutyrate terminated with hydroxyl and carboxyl end groups, were recognized as degradation products released into the water during the incubation time. It was also demonstrated that variations in the degradation rate of individual mat components influenced the degradation pattern and the number of formed oligomers. The obtained results suggest that the incorporation of proanthocyanidins into the system slowed down the hydrolytic degradation process of the poly(L-lactide-co-glycolide)/poly[(R,S)-3-hydroxybutyrate] three-dimensional fibre matrix. In addition, in vitro cytotoxicity and antimicrobial studies advocate the use of PCANs for biomedical applications with promising antimicrobial activity.


Assuntos
Anti-Infecciosos , Proantocianidinas , Humanos , Poliésteres , Bolsa Periodontal , Ácido 3-Hidroxibutírico , Sistemas de Liberação de Medicamentos , Anti-Infecciosos/farmacologia , Hidroxibutiratos , Poli A , Água
4.
Gels ; 10(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38247741

RESUMO

Osseous disease accounts for over half of chronic pathologies, but there is a limited supply of autografts, the gold standard; hence, there is a demand for new synthetic biomaterials. Herein, we present the use of a promising, new dairy-derived biomaterial: whey protein isolate (WPI) in the form of hydrogels, modified with the addition of different concentrations of the biotechnologically produced protein-like polymeric substance poly-γ-glutamic acid (γ-PGA) as a potential scaffold for tissue regeneration. Raman spectroscopic analysis demonstrated the successful creation of WPI-γ-PGA hydrogels. A cytotoxicity assessment using preosteoblastic cells demonstrated that the hydrogels were noncytotoxic and supported cell proliferation from day 3 to 14. All γ-PGA-containing scaffold compositions strongly promoted cell attachment and the formation of dense interconnected cell layers. Cell viability was significantly increased on γ-PGA-containing scaffolds on day 14 compared to WPI control scaffolds. Significantly, the cells showed markers of osteogenic differentiation; they synthesised increasing amounts of collagen over time, and cells showed significantly enhanced alkaline phosphatase activity at day 7 and higher levels of calcium for matrix mineralization at days 14 and 21 on the γ-PGA-containing scaffolds. These results demonstrated the potential of WPI-γ-PGA hydrogels as scaffolds for bone regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA