Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(21): 25232-25247, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35730600

RESUMO

In last few decades, multilayer coatings have achieved enormous attention owing to their unique ability to tune thickness, topography, and chemical composition for developing various functional materials. Such multilayer coatings were mostly and conventionally derived by following a simple layer-by-layer (LbL) deposition process through the strategic use of electrostatic interactions, hydrogen bonding, host-guest interactions, covalent bonding, etc. In the conventional design of multilayer coatings, the chemical composition and morphology of coatings are modulated during the process of multilayer constructions. In such an approach, the postmodulations of the porous multilayers with different and desired chemistries are challenging to achieve due to the lack of availability of readily and selectively reactive moieties. Recently, the design of readily and selectively reactive multilayer coatings (RMLCs) provided a facile basis for postmodulating the prepared coating with various desired chemistries. In fact, by taking advantage of the inherent ability of co-optimizing the topography and various chemistries in porous RMLCs, different durable bioinspired liquid wettabilities (i.e., superhydrophobicity, underwater superoleophobicity, underwater superoleophilicity, slippery property, etc.) were successfully derived. Such interfaces have enormous potential in various prospective applications. In this review, we intend to give an overview of the evolution of LbL multilayer coatings and their synthetic strategies and discuss the key advantages of porous RMLCs in terms of achieving and controlling wettability properties. Recent attempts toward various applications of such multilayer coatings that are strategically embedded with different desired liquid wettabilities will be emphasized.

2.
Angew Chem Int Ed Engl ; 61(19): e202116763, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35194908

RESUMO

The fluorinated-liquid infused amphiphobic slippery interfaces exhibiting superior sliding of the beaded oil/water droplets, often suffer from durability and contamination issues. Here, the ability of 1) hexagonal packing of hydrocarbon sides in a selected "comb-like" polymer and 2) its reversible phase transition at 51 °C was rationally exploited to achieve temperature-assisted rapid (<1 minute) and repetitive (50 times) self-healable amphiphobic solid-slippery coating on both planar and geometrically-complex substrates. The selected "comb-like" polymer was strategically infused in a porous, hydrophilic and thick (≈4.8 µm) polymeric coating. The resultant solid and smooth interface exhibited sliding of beaded droplets of various liquids, including droplets of water, polar (ethanol, 1-propanol, 1-hexanol, DMSO, DMF), and non-polar (decane, dodecane, diiodomethane) organic solvents, edible (vegetable oil), motor, engine (petrol, diesel, kerosene) and crude oils.

3.
Chem Asian J ; 16(9): 1081-1085, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33742553

RESUMO

Control promotion and prevention of platelet adhesion are important for various biomedical applications. In the past, surface topography and chemical modifications have been commonly utilized for tailoring the promotion and prevention of platelet adhesion. Recently, lotus-leaf-inspired superhydrophobicity has appeared as an efficient avenue to prevent platelet adhesion. However, such extreme water repellent interfaces fail to perform upon prolonged and continuous exposure to aqueous phase. In this communication, the strategic use of a catalyst-free 1,4-conjugate addition reaction between amine and acrylate allowed us to investigate the impact of two distinct underwater oil-wettability on platelet adhesion activity. While underwater superoleophobicity inhibited platelet-adhesion, a highly aggregated fibrous network of adhered platelets was observed on underwater superoleophilic coating. Further, this biocompatible and haemocompatible underwater superoleophobic multilayer coating was deposited on a commercially available catheter tube to examine its potential towards the prevention of platelet attachment.


Assuntos
Materiais Biocompatíveis/química , Óleos de Plantas/química , Polifenóis/química , Tamanho da Partícula , Adesividade Plaquetária , Propriedades de Superfície , Molhabilidade
4.
ACS Appl Mater Interfaces ; 12(2): 2935-2943, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31852187

RESUMO

Anticounterfeiting measures are of ever-increasing importance in society, e.g., for securing the authenticity of and the proof of origin for medical drugs. Here, an arms race of counterfeiters and valid manufacturers is taking place, resulting in the need of hard-to-forget, yet easy-to-read out marks. Anticounterfeiting measures based on micropatterns-while being attractive for their need in not widely available printing methods while still being easily read out with fairly common basic optical equipment-are often limited by being too easy to be destroyed by wear or handling. Here, nature-inspired wettability is rationally exploited for developing an unprecedented anticounterfeiting method, where hidden information can be only identified under direct exposures to an aqueous phase or mist and disappears again on air-drying the interface. A chemically reactive and hierarchically featured dip coating, capable of spatially selective covalent modification with primary amine containing small molecules, is developed for abrasion-tolerant patterning interfaces with two extremes of water wettabilities, i.e., superhydrophilicity and superhydrophobicity. Arbitrary handwriting with glucamine followed by chemical modification with octadecylamine, provided "invisible" text on the synthesized interface. The glucamine-treated region selectively becomes optically transparent and superhydrophilic due to rapid infiltration of the aqueous phase on exposure to liquid water or mist. The remaining interface remains opaque and superhydrophobic due to metastable entrapment of air. The hidden text became transiently and reversibly visible by the naked eye under exposure to liquid water/mist. Furthermore, microchannel-cantilever spotting (µCS) is adopted for demonstrating well-defined chemical patterning on the microscale. These patterns are at the same time highly resistant against wear and scratching because of the bulk functionalization, retaining the wetting properties (and thus pattern readout) even on serious abrasion. Such a simple synthesis of spatially controlled, direct, and covalently modulated wettability could be useful for various applied and fundamental contexts.

5.
ACS Appl Mater Interfaces ; 11(37): 34316-34329, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31429551

RESUMO

Design of "chemically reactive" coating with a tailored topography is a simple basis for optimizing various physical and chemical parameters, which is essential for achieving different biomimicked liquid wettability. In general, the essential topography and appropriate chemistry in the superhydrophobic coating is optimized following various top-down and bottom-up approaches, where various hydrophilic building blocks are associated using electrostatic interaction, hydrogen bonding, and other weak bonding (e.g., metal-thiol etc.), for both developing the desired hierarchical features and optimizing the appropriate chemistry on top of this featured interface. Such designs are inappropriate to sustain practically relentlessly harsh settings. So, further development for the synthesis of a durable and substrate-independent superhydrophobic coating is essential for various prospective applications in "real-world" scenarios. However, the design of highly abrasion-tolerant and "absolutely" substrate-independent artificial superhydrophobicity following a simple and scalable synthesis procedure is rare in literature. In this current work, a catalyst-free and facile chemical approach is adopted for an in situ and rapid deposition of a "chemically reactive" nanocomplex for decorating a wide range of substrates, including water-soluble, water-sensitive, highly flexible, rigid, and fibrous substrates with a highly tolerant biomimicked superhydrophobicity property. Branched poly(ethylenimine) (BPEI) and dipentaerythritol pentaacrylate (5Acl) mutually react through 1,4-conjugate addition reaction, and a hierarchically featured "chemically reactive" dip-coating is synthesized by the appropriate selection of the alcoholic solvent that is 1-heptanol. Furthermore, the choice of small alkylamines for post-covalent modifications of the "chemically reactive" dip-coating provided superhydrophobicity with a tailored water adhesion. A gradual increase in both roll-off angles, and the contact angle hysteresis (from 5° to 30°) was noted with a decrease in the hydrocarbon tail of selected alkylamines. The synthesized biomimicked interfaces are capable of performing under various practically relevant, severe physical and chemical challenges including bending, creasing, twisting, different physical abrasions (i.e., adhesive tape peeling test, abrasive sand paper test, etc.), high compressive strain, highly acidic and alkaline aqueous phases, artificial sea water, river water, etc. Moreover, this current approach was extended in developing various relevant functional materials, including superhydrophilic/superhydrophobic physical patterns on flexible papers and highly compressible super-oil-absorbent, etc.

6.
Chem Sci ; 8(9): 6092-6102, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989639

RESUMO

Bioinspired underwater super-oil-wettability (superoleophilic/superoleophobic) properties are emerging as a potential avenue for developing smart materials for addressing issues related to healthcare, environment, energy, etc. However, the inherent poor durability of the materials that are mostly developed using polymeric hydrogel, metal oxide coatings and electrostatic multilayers often challenges the application of these wettability properties in practical scenarios. Here, 'amine-reactive' polymeric multilayers of nano-complex were developed to fabricate 'internal' underwater superoleophobic/superoleophilic coatings with impeccable physical/chemical durability. This allows the super-wetting properties to exist beyond the surface of the material and remain intact even after severe physical damage including erosion of the material and continuous exposure to an artificial-marine environment for more than 80 days. Moreover, this current design allowed for independent revalidation of some key hypotheses with direct experimental demonstrations, and provided a basis to develop highly durable super-oil-wettability properties under water. It is believed that this contemporary study will make a worthwhile contribution on developing multifunctional materials for widespread practical applications by exploiting these super-oil-wetting properties.

7.
Chem Sci ; 8(9): 6542-6554, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989680

RESUMO

The controlled modulation of both oil (under water) and water (in air) wettability is an emerging approach to develop several functional materials for various prospective applications including oil/water separation, anti-corrosive coatings, underwater robotics, protein crystallization, drug delivery, open microfluidics, water harvesting etc. Here, we report a 'reactive' and covalently cross-linked coating through a facile and robust Michael addition reaction, which is suitable for the controlled and extreme regulation of both water and oil wettability in air and under water respectively. Along with extremes (super-philicity and super-phobicity) of water (in air) and oil (under water) wettability, this single multilayer construction was also able to display special liquid wettability (i.e.; extremely liquid repellent-but with controlled adhesive properties) both in air and under water, after strategic post chemical modifications, again through 1,4-conjugate addition reaction. The super-wetting properties in the materials were able to withstand various physical and chemical insults including adhesive tape test, sand drop test, and exposure to extremes of pH, salt, and surfactant contaminated aqueous media. Moreover, this approach also allowed the decoration of various flexible and rigid substrates (i.e.; wood, Al-foil, synthetic fabric etc.) with various bio-inspired wettability properties including (1) non-adhesive superhydrophobicity (lotus leaf), (2) adhesive superhydrophobicity (rose petal), (3) underwater superoleophobicity (fish scale) etc. This single polymeric coating-which is capable of displaying several bio-inspired interfaces both in air and under water, even after harsh physical/chemical insults-would be useful in various prospective and relevant applications for practical scenarios.

8.
ChemSusChem ; 10(24): 4839-4844, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29083120

RESUMO

A hydrophobic 3 D material having smart relationship with oil under water (having both water affinity and water repellency in absence and presence of oil), is developed here using a scalable and facile 1,4-conjugate addition reaction between acrylate and amine groups at ambient conditions without using any catalyst. The material that was soaked with water in air is capable of absorbing both heavy and light oils with an efficiency above 1000 wt %, and the impregnated metastable aqueous phase was spontaneously and selectively ejected out from the material. This unprecedented super-oil-absorbance property remained intact in diverse scenarios, including extremes of temperature (100 and 10 °C), pressure (184.7 mbar), and prolonged (7 days) exposures to extremes of pH (1 and 12), surfactants-contaminated (dodecyltrimethylammonium bromide/sodium dodecyl sulfate, DTAB/SDS, 1 mm) water, artificial sea water, etc. Furthermore, this super-oil-absorbent having outstanding durability was exploited also in demonstrations of comprehensive and facile clean-up of oil from various forms of oil-water mixtures (i.e., floating light-oil, sediment heavy-oil, oil-in-water emulsions, etc.) in extremes and complex settings that are relevant to practical scenarios including marine oil spills, following ecofriendly and energy-efficient selective-absorption/active-filtration principles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA