Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37504737

RESUMO

Ustilago maydis is an important model to study intermediary and mitochondrial metabolism, among other processes. U. maydis can grow, at very different rates, on glucose, lactate, glycerol, and ethanol as carbon sources. Under nitrogen starvation and glucose as the only carbon source, this fungus synthesizes and accumulates neutral lipids in the form of lipid droplets (LD). In this work, we studied the accumulation of triacylglycerols in cells cultured in a medium containing acetate, a direct precursor of the acetyl-CoA required for the synthesis of fatty acids. The metabolic adaptation of cells to acetate was studied by measuring the activities of key enzymes involved in glycolysis, gluconeogenesis, and the pentose phosphate pathways. Since growth on acetate induces oxidative stress, the activities of some antioxidant enzymes were also assayed. The results show that cells grown in acetate plus nitrate did not increase the amount of LD, but increased the activities of glutathione reductase, glutathione peroxidase, catalase, and superoxide dismutase, suggesting a higher production of reactive oxygen species in cells growing in acetate. The phosphofructokinase-1 (PFK1) was the enzyme with the lowest specific activity in the glycolytic pathway, suggesting that PFK1 controls the flux of glycolysis. As expected, the activity of the phosphoenolpyruvate carboxykinase, a gluconeogenic enzyme, was present only in the acetate condition. In summary, in the presence of acetate as the only carbon source, U. maydis synthesized fatty acids, which were directed into the production of phospholipids and neutral lipids for biomass generation, but without any excessive accumulation of LD.

2.
Biochim Biophys Acta Bioenerg ; 1864(2): 148950, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509127

RESUMO

The F1FO-ATP synthase uses the energy stored in the electrochemical proton gradient to synthesize ATP. This complex is found in the inner mitochondrial membrane as a monomer and dimer. The dimer shows higher ATPase activity than the monomer and is essential for cristae folding. The monomer-monomer interface is constituted by subunits a, i/j, e, g, and k. The role of the subunit g in a strict respiratory organism is unknown. A gene knockout was generated in Ustilago maydis to study the role of subunit g on mitochondrial metabolism and cristae architecture. Deletion of the ATP20 gene, encoding the g subunit, did not affect cell growth or glucose consumption, but biomass production was lower in the mutant strain (gΔ strain). Ultrastructure observations showed that mitochondrial size and cristae shape were similar in wild-type and gΔ strains. The mitochondrial membrane potential in both strains had a similar magnitude, but oxygen consumption was higher in the WT strain. ATP synthesis was 20 % lower in the gΔ strain. Additionally, the mutant strain expressed the alternative oxidase in the early stages of growth (exponential phase), probably as a response to ROS stress. Dimer from mutant strain was unstable to digitonin solubilization, avoiding its isolation and kinetic characterization. The isolated monomeric state activated by n-dodecyl-ß-D-maltopyranoside showed similar kinetic constants to the monomer from the WT strain. A decrease in mitochondrial ATP synthesis and the presence of the AOX during the exponential growth phase suggests that deletion of the g gene induces ROS stress.


Assuntos
Peróxido de Hidrogênio , ATPases Mitocondriais Próton-Translocadoras , Peróxido de Hidrogênio/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo
3.
J Fungi (Basel) ; 8(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36422042

RESUMO

It has been shown that the alternative oxidase in mitochondria of fungi and plants has important functions in the response against stress conditions, although their role in some organisms is still unknown. This is the case of Ustilago maydis. There is no evidence of the participation of the U. maydis Aox1 in stressful conditions such as desiccation, high or low temperature, and low pH, among others. Therefore, in this work, we studied the role of the U. maydis Aox1 in cells exposed to oxidative stress induced by methyl viologen (paraquat). To gain insights into the role of this enzyme, we took advantage of four strains: the FB2 wild-type, a strain without the alternative oxidase (FB2aox1Δ), other with the Aox1 fused to the Gfp under the control of the original promoter (FB2aox1-Gfp), and one expressing constitutively de Aox1-Gfp (FB2Potef:aox1-Gfp). Cells were incubated for various times in the presence of 1 mM paraquat and growth, replicative capacities, mitochondrial respiratory activity, Aox1 capacity, and the activities of several antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase, and superoxide dismutase) were assayed. The results show that (1) the response of U. maydis against oxidative stress was the same in the presence or absence of the Aox1; (2) the activities of the antioxidant enzymes remained constant despite the oxidative stress; and (3) there was a decrease in the GSH/GSSG ratio in U. maydis cells incubated with paraquat.

4.
J Fungi (Basel) ; 8(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35736033

RESUMO

Plasma membrane H+-ATPases of fungi, yeasts, and plants act as proton pumps to generate an electrochemical gradient, which is essential for secondary transport and intracellular pH maintenance. Saccharomyces cerevisiae has two genes (PMA1 and PMA2) encoding H+-ATPases. In contrast, plants have a larger number of genes for H+-ATPases. In Ustilago maydis, a biotrophic basidiomycete that infects corn and teosinte, the presence of two H+-ATPase-encoding genes has been described, one with high identity to the fungal enzymes (pma1, UMAG_02851), and the other similar to the plant H+-ATPases (pma2, UMAG_01205). Unlike S. cerevisiae, these two genes are expressed jointly in U. maydis sporidia. In the present work, mutants lacking one of these genes (Δpma1 and Δpma2) were used to characterize the role of each one of these enzymes in U. maydis physiology and to obtain some of their kinetic parameters. To approach this goal, classical biochemical assays were performed. The absence of any of these H+-ATPases did not affect the growth or fungal basal metabolism. Membrane potential tests showed that the activity of a single H+-ATPase was enough to maintain the proton-motive force. Our results indicated that in U. maydis, both H+-ATPases work jointly in the generation of the electrochemical proton gradient, which is important for secondary transport of metabolites and regulation of intracellular pH.

5.
Bio Protoc ; 12(1): e4277, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35118170

RESUMO

Ustilago maydis, a basidiomycete that infects Zea mays, is one of the top ten fungal models for studying DNA repair, signal transduction pathways, and dimorphic transitions, among other processes. From a metabolic point of view, U. maydis lacks fermentative capacity, pointing to mitochondria as a key player in central metabolism. Oxidative phosphorylation, synthesis of heme groups, Krebs cycle, ß-oxidation of fatty acids, and synthesis of amino acids are some of the processes that take place in mitochondria. Given the importance of this organelle in eukaryotic cells in general, and in fungal cells in particular, we present a protocol for the isolation of U. maydis mitochondria based on the enzymatic disruption of U. maydis cell wall and differential centrifugation. The method can easily be extrapolated to other fungal species, by using appropriate lytic enzymes.

6.
J Fungi (Basel) ; 7(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440829

RESUMO

Respiratory supercomplexes are found in mitochondria of eukaryotic cells and some bacteria. A hypothetical role of these supercomplexes is electron channeling, which in principle should increase the respiratory chain efficiency and ATP synthesis. In addition to the four classic respiratory complexes and the ATP synthase, U. maydis mitochondria contain three type II NADH dehydrogenases (NADH for reduced nicotinamide adenine dinucleotide) and the alternative oxidase. Changes in the composition of the respiratory supercomplexes due to energy requirements have been reported in certain organisms. In this study, we addressed the organization of the mitochondrial respiratory complexes in U. maydis under diverse energy conditions. Supercomplexes were obtained by solubilization of U. maydis mitochondria with digitonin and separated by blue native polyacrylamide gel electrophoresis (BN-PAGE). The molecular mass of supercomplexes and their probable stoichiometries were 1200 kDa (I1:IV1), 1400 kDa (I1:III2), 1600 kDa (I1:III2:IV1), and 1800 kDa (I1:III2:IV2). Concerning the ATP synthase, approximately half of the protein is present as a dimer and half as a monomer. The distribution of respiratory supercomplexes was the same in all growth conditions. We did not find evidence for the association of complex II and the alternative NADH dehydrogenases with other respiratory complexes.

7.
Arch Biochem Biophys ; 694: 108603, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32986977

RESUMO

The alternative oxidase (AOX) catalyzes the transfer of electrons from ubiquinol to oxygen without the translocation of protons across the inner mitochondrial membrane. This enzyme has been proposed to participate in the regulation of cell growth, sporulation, yeast-mycelium transition, resistance to reactive oxygen species, infection, and production of secondary metabolites. Two approaches have been used to evaluate AOX function: incubation of cells for long periods of time with AOX inhibitors or deletion of AOX gene. However, AOX inhibitors might have different targets. To test non-specific effects of n-octyl gallate (nOg) and salicylhydroxamic acid (SHAM) on fungal physiology we measured the growth and respiratory capacity of two fungal strains lacking (Ustilago maydis-Δaox and Saccharomyces cerevisiae) and three species containing the AOX gene (U. maydis WT, Debaryomyces hansenii, and Aspergillus nidulans). For U. maydis, a strong inhibition of growth and respiratory capacity by SHAM was observed, regardless of the presence of AOX. Similarly, A. nidulans mycelial growth was inhibited by low concentrations of nOg independently of AOX expression. In contrast, these inhibitors had no effect or had a minor effect on S. cerevisiae and D. hansenii growth. These results show that nOg and SHAM have AOX independent effects which vary in different microorganisms, indicating that studies based on long-term incubation of cells with these inhibitors should be considered as inconclusive.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Fungos/efeitos dos fármacos , Ácido Gálico/análogos & derivados , Oxirredutases/antagonistas & inibidores , Salicilamidas/farmacologia , Processos de Crescimento Celular/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Ácido Gálico/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Oxigênio/metabolismo
8.
Front Microbiol ; 11: 837, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477294

RESUMO

The dynamin-like protein Drp1 and its receptor Fis-1 are required for mitochondria and peroxisome fission in animal and yeast cells. Here, we show that in the fungus Aspergillus nidulans the lack of Drp1 and Fis-1 homologs DnmA and FisA has strong developmental defects, leading to a notable decrease in hyphal growth and asexual and sexual sporulation, with some of these defects being aggravated or partially remediated by different carbon sources. Although both DnmA and FisA, are essential for mitochondrial fission, participate in peroxisomal division and are fully required for H2O2-induced mitochondrial division, they also appear to play differential functions. Despite their lack of mitochondrial division, ΔdnmA and ΔfisA mutants segregate mitochondria to conidiogenic cells and produce viable conidia that inherit a single mitochondrion. During sexual differentiation, ΔdnmA and ΔfisA mutants develop fruiting bodies (cleistothecia) that differentiate excessive ascogenous tissue and a reduced number of viable ascospores. ΔdnmA and ΔfisA mutants show decreased respiration and notably high levels of mitochondrial reactive oxygen species (ROS), which likely correspond to superoxide. Regardless of this, ΔdnmA mutants can respond to an external H2O2 challenge by re-localizing the MAP kinase-activated protein kinase (MAPKAP) SrkA from the cytoplasm to the nuclei. Our results show that ROS levels regulate mitochondrial dynamics while a lack of mitochondrial fission results in lower respiration, increased mitochondrial ROS and developmental defects, indicating that ROS, mitochondrial division and development are critically interrelated processes.

9.
Arch Microbiol ; 202(5): 1211-1221, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32088730

RESUMO

The evolutionarily conserved serine/threonine kinase TOR recruits different subunits to assemble the Target of Rapamycin Complex 1 (TORC1), which is inhibited by rapamycin and regulates ribosome biogenesis, autophagy, and lipid metabolism by regulating the expression of lipogenic genes. In addition, TORC1 participates in the cell cycle, increasing the length of the G2 phase. In the present work, we investigated the effect of rapamycin on cell growth, cell morphology and neutral lipid metabolism in the phytopathogenic fungus Ustilago maydis. Inhibition of TORC1 by rapamycin induced the formation of septa that separate the nuclei that were formed after mitosis. Regarding neutral lipid metabolism, a higher accumulation of triacylglycerols was not detected, but the cells did contain large lipid bodies, which suggests that small lipid bodies became fused into big lipid droplets. Vacuoles showed a similar behavior as the lipid bodies, and double labeling with Blue-CMAC and BODIPY indicates that vacuoles and lipid bodies were independent organelles. The results suggest that TORC1 has a role in cell morphology, lipid metabolism, and vacuolar physiology in U. maydis.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Sirolimo/farmacologia , Ustilago/efeitos dos fármacos , Antifúngicos/farmacologia , Lipídeos/análise , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Triglicerídeos/administração & dosagem , Ustilago/química , Vacúolos/química
10.
PLoS One ; 14(8): e0220853, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31408482

RESUMO

During the lactation period, rat pups are fed by the dam, and the patterns of mother-pup interaction change during this period. Additionally, there are changes in feeding; first, mother´s milk is the only food needed for sustenance, and later, it is combined with solid food and water. GH serum concentrations depend on both maternal-pup interaction and energy metabolism. In the artificial rearing (AR) procedure, pups are deprived of mother-pup interaction, and the feeding pattern is controlled. This rearing paradigm has been used in rats to analyze the effects of maternal deprivation on social behavior. In the present study, we analyzed the variation in GH, acylated ghrelin and IGF-1 serum concentrations throughout the lactation period in AR pups. At pnd7, the maternal rearing (MR) pups responded to a 4 h fast with a drop in GH serum concentration, which is a well-known response to maternal deprivation. GH serum levels in the AR pups did not change, suggesting an adaptation phenomenon. A dopamine inhibitory effect of GH secretion was observed in pnd7 cultured somatotropes, suggesting dopamine regulation of GH secretion at this age. Acylated ghrelin serum levels in the AR pups showed an inverted pattern compared to that in the MR pups, which was related to the artificial feeding pattern. IGF-1 serum levels were lower in the AR pups than in MR pups, which was associated with hepatic GH resistance and with low Igf1 mRNA expression at pnd7. Interestingly, at pnd14, both pup groups showed high hepatic Igf1 mRNA expression but low IGF-1 serum levels, and this was inverted at pnd21. However, serum glucose levels were lower in the AR pups at pnd14 but reached the same levels as the MR pups at pnd21. Moreover, hepatomegaly and higher hepatic GH-receptor levels were observed in the AR pups at pnd21, which was in agreement with an absence of a solid food meal. During AR, the pups lost the maternal interaction-stimulated GH secretion, which correlated with lower IGF-1 serum levels during the first week of postnatal development. Later, the AR pups exhibited hepatic responses, in order to satisfy the metabolic demand for the normal weaning, with low carbohydrates levels in their meal.


Assuntos
Animais Recém-Nascidos/sangue , Hormônio do Crescimento/sangue , Lactação/fisiologia , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/fisiologia , Glicemia/análise , Feminino , Grelina/sangue , Fator de Crescimento Insulin-Like I/análise , Fígado/química , Masculino , Privação Materna , Hipófise/citologia , Hipófise/metabolismo , Ratos , Ratos Wistar/sangue , Ratos Wistar/crescimento & desenvolvimento , Ratos Wistar/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Tíbia/crescimento & desenvolvimento
11.
FEBS Open Bio ; 8(8): 1267-1279, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30221129

RESUMO

Type 2 alternative NADH dehydrogenases (NDH-2) participate indirectly in the generation of the electrochemical proton gradient by transferring electrons from NADH and NADPH into the ubiquinone pool. Due to their structural simplicity, alternative NADH dehydrogenases have been proposed as useful tools for gene therapy of cells with defects in the respiratory complex I. In this work, we report the presence of three open reading frames, which correspond to NDH-2 genes in the genome of Ustilago maydis. These three genes were constitutively transcribed in cells cultured in YPD and minimal medium with glucose, ethanol, or lactate as carbon sources. Proteomic analysis showed that only two of the three NDH-2 were associated with isolated mitochondria in all culture media. Oxygen consumption by permeabilized cells using NADH or NADPH was different for each condition, opening the possibility of posttranslational regulation. We confirmed the presence of both external and internal NADH dehydrogenases, as well as an external NADPH dehydrogenase insensitive to calcium. Higher oxygen consumption rates were observed during the exponential growth phase, suggesting that the activity of NADH and NADPH dehydrogenases is coupled to the dynamics of cell growth.

12.
J Vis Exp ; (134)2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29683447

RESUMO

The article shows how to implement the LD index assay, which is a sensitive microplate assay to determine the accumulation of triacylglycerols (TAGs) in lipid droplets (LDs). LD index is obtained without lipid extraction. It allows measuring the LDs content in high-throughput experiments under different conditions such as growth in rich or nitrogen depleted media. Albeit the method was described for the first time to study the lipid droplet metabolism in Saccharomyces cerevisiae, it was successfully applied to the basidiomycete Ustilago maydis. Interestingly, and because LDs are organelles phylogenetically conserved in eukaryotic cells, the method can be applied to a large variety of cells, from yeast to mammalian cells. The LD index is based on the liquid fluorescence recovery assay (LFR) of the BODIPY 493/503 under quenching conditions, by the addition of cells fixed with formaldehyde. Potassium iodine is used as a fluorescence quencher. The ratio between the fluorescence and the optical density slopes is named LD index. Slopes are calculated from the straight lines obtained when BODIPY fluorescence and optical density at 600 nm (OD600) are plotted against sample addition. Optimal data quality is reflected by correlation coefficients equal or above 0.9 (r ≥ 0.9). Multiple samples can be read simultaneously as it can be implemented in a microplate. Since BODIPY 493/503 is a lipophilic fluorescent dye that partitions into the lipid droplets, it can be used in many types of cells that accumulate LDs.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Lipídeos/análise , Ustilago/metabolismo , Compostos de Boro , Fluorescência , Lipídeos/química
13.
Molecules ; 22(12)2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215563

RESUMO

Chitosan is a stressing molecule that affects the cells walls and plasma membrane of fungi. For chitosan derivatives, the action mode is not clear. In this work, we used the yeast Ustilago maydis to study the effects of these molecules on the plasma membrane, focusing on physiologic and stress responses to chitosan (CH), oligochitosan (OCH), and glycol-chitosan (GCH). Yeasts were cultured with each of these molecules at 1 mg·mL-1 in minimal medium. To compare plasma membrane damage, cells were cultivated in isosmolar medium. Membrane potential (Δψ) as well as oxidative stress were measured. Changes in the total plasma membrane phospholipid and protein profiles were analyzed using standard methods, and fluorescence-stained mitochondria were observed. High osmolarity did not protect against CH inhibition and neither affected membrane potential. The OCH did produce higher oxidative stress. The effects of these molecules were evidenced by modifications in the plasma membrane protein profile. Also, mitochondrial damage was evident for CH and OCH, while GCH resulted in thicker cells with fewer mitochondria and higher glycogen accumulation.


Assuntos
Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Quitina/análogos & derivados , Quitosana/farmacologia , Ustilago/efeitos dos fármacos , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular , Parede Celular/ultraestrutura , Quitina/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Oligossacarídeos , Concentração Osmolar , Fosfolipídeos/metabolismo , Poliaminas/farmacologia , Polieletrólitos , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Ustilago/metabolismo , Ustilago/ultraestrutura
14.
Biochim Biophys Acta Bioenerg ; 1858(12): 975-981, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28919501

RESUMO

Ustilago maydis is an aerobic basidiomycete that fully depends on oxidative phosphorylation for its supply of ATP, pointing to mitochondria as a key player in the energy metabolism of this organism. Mitochondrial F1F0-ATP synthase occurs in supramolecular structures. In this work, we isolated the monomer (640kDa) and the dimer (1280kDa) and characterized their subunit composition and kinetics of ATP hydrolysis. Mass spectrometry revealed that dimerizing subunits e and g were present in the dimer but not in the monomer. Analysis of the ATPase activity showed that both oligomers had Michaelis-Menten kinetics, but the dimer was 7 times more active than the monomer, while affinities were similar. The dimer was more sensitive to oligomycin inhibition, with a Ki of 24nM, while the monomer had a Ki of 169nM. The results suggest that the interphase between the monomers in the dimer state affects the catalytic efficiency of the enzyme and its sensitivity to inhibitors.


Assuntos
Trifosfato de Adenosina/metabolismo , ATPases Mitocondriais Próton-Translocadoras/química , Multimerização Proteica/genética , Subunidades Proteicas/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos/genética , Metabolismo Energético/genética , Hidrólise/efeitos dos fármacos , Cinética , Espectrometria de Massas , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Oligomicinas/farmacologia , Subunidades Proteicas/metabolismo , Ustilago/enzimologia
15.
Arch Microbiol ; 199(8): 1195-1209, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28550409

RESUMO

In many organisms, the growth under nitrogen-deprivation or a poor nitrogen source impacts on the carbon flow distribution and causes accumulation of neutral lipids, which are stored as lipid droplets (LDs). Efforts are in progress to find the mechanism of LDs synthesis and degradation, and new organisms capable of accumulating large amounts of lipids for biotechnological applications. In this context, when Ustilago maydis was cultured in the absence of a nitrogen source, there was a large accumulation of lipid bodies containing mainly triacylglycerols. The most abundant fatty acids in lipid bodies at the stationary phase were palmitic, linoleic, and oleic acids, and they were synthesized de novo by the fatty-acid synthase. In regard to the production of NADPH for the synthesis of fatty acids, the cytosolic NADP+-dependent isocitrate dehydrogenase and the glucose-6-phosphate and 6-phosphogluconate dehydrogenases couple showed the highest specific activities, with a lower activity of the malic enzyme. The ATP-citrate lyase activity was not detected in any of the culture conditions, which points to a different mechanism for the transfer of acetyl-CoA into the cytosol. Protein and RNA contents decreased when U. maydis was grown without a nitrogen source. Due to the significant accumulation of triacylglycerols and the particular composition of fatty acids, U. maydis can be considered an alternative model for biotechnological applications.


Assuntos
Ácidos Graxos/biossíntese , Gotículas Lipídicas/metabolismo , Nitrogênio/metabolismo , Triglicerídeos/biossíntese , Ustilago/metabolismo , Carbono/metabolismo , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Isocitrato Desidrogenase/metabolismo , Malato Desidrogenase/metabolismo , Complexos Multienzimáticos/metabolismo , Oxirredução , Oxo-Ácido-Liases/metabolismo , Fosfogluconato Desidrogenase/metabolismo
16.
PLoS One ; 12(3): e0173389, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28273139

RESUMO

The mitochondrial alternative oxidase is an important enzyme that allows respiratory activity and the functioning of the Krebs cycle upon disturbance of the respiration chain. It works as a security valve in transferring excessive electrons to oxygen, thereby preventing potential damage by the generation of harmful radicals. A clear biological function, besides the stress response, has so far convincingly only been shown for plants that use the alternative oxidase to generate heat to distribute volatiles. In fungi it was described that the alternative oxidase is needed for pathogenicity. Here, we investigate expression and function of the alternative oxidase at different stages of the life cycle of the corn pathogen Ustilago maydis (Aox1). Interestingly, expression of Aox1 is specifically induced during the stationary phase suggesting a role at high cell density when nutrients become limiting. Studying deletion strains as well as overexpressing strains revealed that Aox1 is dispensable for normal growth, for cell morphology, for response to temperature stress as well as for filamentous growth and plant pathogenicity. However, during conditions eliciting respiratory stress yeast-like growth as well as hyphal growth is strongly affected. We conclude that Aox1 is dispensable for the normal biology of the fungus but specifically needed to cope with respiratory stress.


Assuntos
Respiração Celular , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Ustilago/metabolismo , Ustilago/patogenicidade , Adaptação Biológica , Proteínas Fúngicas/metabolismo , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Oxirredutases/genética , Consumo de Oxigênio , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Temperatura , Ustilago/genética , Zea mays/metabolismo , Zea mays/microbiologia
17.
Gene ; 597: 40-48, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27771449

RESUMO

During the interphase the nuclear DNA of metazoan cells is organized in supercoiled loops anchored to constituents of a nuclear substructure or compartment known as the nuclear matrix. The stable interactions between DNA and the nuclear matrix (NM) correspond to a set of topological relationships that define a nuclear higher-order structure (NHOS). Current evidence suggests that the NHOS is cell-type-specific. Biophysical evidence and theoretical models suggest that thermodynamic and structural constraints drive the actualization of DNA-NM interactions. However, if the topological relationships between DNA and the NM were the subject of any biological constraint with functional significance then they must be adaptive and thus be positively selected by natural selection and they should be reasonably conserved, at least within closely related species. We carried out a coarse-grained, comparative evaluation of the DNA-NM topological relationships in primary hepatocytes from two closely related mammals: rat and mouse, by determining the relative position to the NM of a limited set of target sequences corresponding to highly-conserved genomic regions that also represent a sample of distinct chromosome territories within the interphase nucleus. Our results indicate that the pattern of topological relationships between DNA and the NM is not conserved between the hepatocytes of the two closely related species, suggesting that the NHOS, like the karyotype, is species-specific.


Assuntos
DNA/ultraestrutura , Hepatócitos/citologia , Matriz Nuclear/ultraestrutura , Animais , DNA/metabolismo , Desoxirribonuclease I/metabolismo , Eletroforese em Gel de Poliacrilamida/métodos , Hepatócitos/fisiologia , Cinética , Masculino , Camundongos Endogâmicos , Matriz Nuclear/genética , Ratos Wistar , Especificidade da Espécie
18.
Pflugers Arch ; 467(12): 2447-60, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26100673

RESUMO

TRK transporters, a class of proteins which generally carry out the bulk of K(+) accumulation in plants, fungi, and bacteria, mediate ion currents driven by the large membrane voltages (-150 to -250 mV) common to non-animal cells. Bacterial TRK proteins resemble K(+) channels in their primary sequence, crystallize as membrane dimers having intramolecular K(+)-channel-like folding, and complex with a cytoplasmic collar formed of four RCK domains (Nature 471:336, 2011; Ibid 496:324, 2013). Fungal TRK proteins appear simpler in form than the bacterial members, but do possess two special features: a large built-in regulatory domain, and a highly conserved pair of transmembrane helices (TM7 and TM8, ahead of the C-terminus), which were postulated to facilitate intramembranal oligomerization (Biophys. J. 77:789, 1999; FEMS Yeast Res. 9:278, 2009). A surprising associated functional process in the fungal proteins which have been explored (Saccharomyces, Candida, and Neurospora) is facilitation of channel-like chloride efflux. That process is suppressed by osmoprotective agents, appears to involve hydrophobic gating, and strongly resembles conduction by Cys-loop ligand-gated anion channels. And it leads to a rather general hypothesis: that the thermodynamic tendency for hydrophobic or amphipathic transmembrane helices to self-organize into oligomers can create novel ionic pathways through biological membranes: fundamental hydrophobic nanopores, pathways of low selectivity governed by the chaotropic behavior of individual ionic species and under the strong influence of membrane voltage.


Assuntos
Cloretos/metabolismo , Canais de Potássio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Potássio/metabolismo , Canais de Potássio/química , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Leveduras/genética , Leveduras/metabolismo
19.
Int J Biol Macromol ; 79: 654-60, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26047896

RESUMO

Ustilago maydis, a dimorphic fungus causing corn smut disease, serves as an excellent model to study different aspects of cell development. This study shows the influence of chitosan, oligochitosan and glycol chitosan on cell growth and physiology of U. maydis. These biological macromolecules affected the cell growth of U. maydis. In particular, it was found that chitosan completely inhibited U. maydis growth at 1mg/mL concentration. Microscopic studies revealed swellings on the surface of the cells treated with the polymers, and chitosan caused complete destruction of the membrane and formation of vesicles on the periphery of the cell. Oligochitosan and chitosan caused changes in oxygen consumption, K(+) efflux and H(+)-ATPase activity. Oligochitosan induced a faster consumption of oxygen in the cells, while glycol chitosan provoked slower oxygen consumption. It is noteworthy that chitosan completely inhibited the fungal respiratory activity. The strongest effects were exhibited by chitosan in all evaluated aspects. These findings showed high sensitivity of U. maydis to chitosan and provided evidence for antifungal effects of chitosan derivatives. To our knowledge, this is a first report showing that chitosan and its derivatives affect the cell morphology and physiological processes in U. maydis.


Assuntos
Antifúngicos/farmacologia , Membrana Celular/efeitos dos fármacos , Quitina/análogos & derivados , Quitosana/farmacologia , Ustilago/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Quitina/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Transporte de Íons/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Oligossacarídeos , Consumo de Oxigênio/efeitos dos fármacos , Potássio/metabolismo , Relação Estrutura-Atividade , Ustilago/metabolismo , Ustilago/ultraestrutura , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo
20.
Arch Biochem Biophys ; 575: 30-7, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25843420

RESUMO

The F1FO-ATP synthase of the colorless alga Polytomella sp. exhibits a robust peripheral arm constituted by nine atypical subunits only present in chlorophycean algae. The isolated dimeric enzyme exhibits a latent ATP hydrolytic activity which can be activated by some detergents. To date, the kinetic behavior of the algal ATPase has not been studied. Here we show that while the soluble F1 sector exhibits Michaelis-Menten kinetics, the dimer exhibits a more complex behavior. The kinetic parameters (Vmax and Km) were obtained for both the F1 sector and the dimeric enzyme as isolated or activated by detergent, and this activation was also seen on the enzyme reconstituted in liposomes. Unlike other ATP synthases, the algal dimer hydrolyzes ATP on a wide range of pH and temperature. The enzyme was inhibited by oligomycin, DCCD and Mg-ADP, although oligomycin induced a peculiar inhibition pattern that can be attributed to structural differences in the algal subunit-c. The hydrolytic activity was temperature-dependent and exhibited activation energy of 4 kcal/mol. The enzyme also exhibited a hysteretic behavior with a lag phase strongly dependent on temperature but not on pH, that may be related to a possible regulatory role in vivo.


Assuntos
Trifosfato de Adenosina/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Volvocida/enzimologia , Difosfato de Adenosina/farmacologia , Dicicloexilcarbodi-Imida/farmacologia , Dimerização , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Concentração de Íons de Hidrogênio , Cinética , Oligomicinas/farmacologia , Proteólise , ATPases Translocadoras de Prótons/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA