Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Med Chem ; 15(1): 223-233, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38283213

RESUMO

211At, when coupled to a targeting agent, is one of the most promising radionuclides for therapeutic applications. The main labelling approach consists in the formation of astatoaryl compounds, which often show a lack of in vivo stability. The hypothesis that halogen bond (XB) interactions with protein functional groups initiate a deastatination mechanism is investigated through radiochemical experiments and DFT modelling. Several descriptors agree on the known mechanism of iodoaryl substrates dehalogenation by iodothyronine deiodinases, supporting the higher in vivo dehalogenation of N-succinimidyl 3-[211At]astatobenzoate (SAB) conjugates in comparison with their iodinated counterparts. The guanidinium group in 3-[211At]astato-4-guanidinomethylbenzoate (SAGMB) prevents the formation of At-mediated XBs with the selenocysteine active site in iodothyronine deiodinases. The initial step of At-aryl bond dissociation is inhibited, elucidating the better in vivo stability of SAGMB conjugates compared with those of SAB. The impact of astatine's ability to form XB interactions on radiopharmaceutical degradation may not be limited to the case of aryl radiolabeling.

2.
Inorg Chem ; 59(19): 13923-13932, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32960574

RESUMO

The affinity of AtO+ for around 20 model ligands (L), carrying functionalized oxygen, sulfur, and nitrogen atoms, has been assessed through a combined experimental and theoretical methodology. Significant equilibrium constants (KL ∼ 104) have been measured for sulfur-containing compounds, in agreement with the previously highlighted, relatively stable radiolabeling of SH-containing proteins with 211At. Conversely, no interaction occurs in the aqueous phase for their oxygenated counterparts, but higher affinities (KL > 106) have been determined for nitrogen-based ligands, including aromatic nitrogen heterocycles. The quantum mechanical calculations definitively ruled out any rationale based on either the metallic character of astatine or its guessed softness; the favored interactions all involve specifically the oxygen atom of AtO+, leading to the formation of covalent O-S or O-C single bonds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA