Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RNA ; 21(12): 2030-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26443379

RESUMO

Argonaute 2 (Ago2) protein is a central effector of RNA interference (RNAi) pathways and regulates mammalian genes on a global level. The mechanisms of Ago2-mediated silencing are well understood, but less is known about its regulation. Recent reports indicate that phosphorylation significantly affects Ago2 activity. Here, we investigated the effect of mutating all known phospho-residues within Ago2 on its localization and activity. Ago2 associates with two different cytoplasmic RNA granules known as processing bodies (P-bodies) and stress granules, but the nature of this phenomenon is controversial. We report that replacing serine with a phospho-mimetic aspartic acid at position 798 completely abrogates association of Ago2 with P-bodies and stress granules. The effect of this mutation on its activity in gene silencing was modest, which was surprising because association of Ago2 with cytoplasmic RNA granules is thought to be a consequence of its role in RNAi. As such, our data indicate that targeting of Ago2 to P-bodies and stress granules is separable from its role in RNAi and likely requires dynamic phosphorylation of serine 798.


Assuntos
Proteínas Argonautas/metabolismo , Processamento de Proteína Pós-Traducional , Substituição de Aminoácidos , Animais , Proteínas Argonautas/genética , Carboxipeptidases/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Humanos , Camundongos , MicroRNAs/metabolismo , Fosforilação , Transporte Proteico , Ribonuclease III/metabolismo
2.
Cell Host Microbe ; 15(4): 395-7, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24721566

RESUMO

Establishing lifelong infection and periodically shedding infectious progeny is a successful strategy employed by several persistent pathogens. In this issue of Cell Host & Microbe, Pan et al. (2014) demonstrate that a cell-type-specific host microRNA can restrict gene expression and pathogenicity of herpes simplex virus 1, thereby promoting long-term infection.


Assuntos
Herpesvirus Humano 1/genética , Proteínas Imediatamente Precoces/biossíntese , Proteínas Imediatamente Precoces/genética , MicroRNAs/genética , Gânglio Trigeminal/virologia , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética , Animais , Humanos , Masculino
4.
Cell Host Microbe ; 14(4): 435-45, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24075860

RESUMO

RNA interference (RNAi) is an established antiviral defense mechanism in plants and invertebrates. Whether RNAi serves a similar function in mammalian cells remains unresolved. We find that in some cell types, mammalian RNAi activity is reduced shortly after viral infection via poly-ADP-ribosylation of the RNA-induced silencing complex (RISC), a core component of RNAi. Well-established antiviral signaling pathways, including RIG-I/MAVS and RNaseL, contribute to inhibition of RISC. In the absence of virus infection, microRNAs repress interferon-stimulated genes (ISGs) associated with cell death and proliferation, thus maintaining homeostasis. Upon detection of intracellular pathogen-associated molecular patterns, RISC activity decreases, contributing to increased expression of ISGs. Our results suggest that, unlike in lower eukaryotes, mammalian RISC is not antiviral in some contexts, but rather RISC has been co-opted to negatively regulate toxic host antiviral effectors via microRNAs.


Assuntos
Vírus de DNA/imunologia , Interferons/imunologia , Interferência de RNA , Vírus de RNA/imunologia , Complexo de Inativação Induzido por RNA/metabolismo , Transdução de Sinais , Linhagem Celular , Humanos , Modelos Biológicos
5.
Mol Biol Cell ; 24(15): 2303-10, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23741051

RESUMO

Argonaute proteins and small RNAs together form the RNA-induced silencing complex (RISC), the central effector of RNA interference (RNAi). The molecular chaperone Hsp90 is required for the critical step of loading small RNAs onto Argonaute proteins. Here we show that the Hsp90 cochaperones Cdc37, Aha1, FKBP4, and p23 are required for efficient RNAi. Whereas FKBP4 and p23 form a stable complex with hAgo2, the function of Cdc37 in RNAi appears to be indirect and may indicate that two or more Hsp90 complexes are involved. Our data also suggest that p23 and FKBP4 interact with hAgo2 before small RNA loading and that RISC loading takes place in the cytoplasm rather than in association with RNA granules. Given the requirement for p23 and FKBP4 for efficient RNAi and that these cochaperones bind to hAgo2, we predict that loading of hAgo2 is analogous to Hsp90-mediated steroid hormone receptor activation. To this end, we outline a model in which FKBP4, p23, and Aha1 cooperatively regulate the progression of hAgo2 through the chaperone cycle. Finally, we propose that hAgo2 and RNAi can serve as a robust model system for continued investigation into the Hsp90 chaperone cycle.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Oxirredutases Intramoleculares/metabolismo , Interferência de RNA , Proteínas de Ligação a Tacrolimo/metabolismo , Células HeLa , Humanos , Imunoprecipitação , Prostaglandina-E Sintases , Ligação Proteica , Mapeamento de Interação de Proteínas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
6.
Biochem Biophys Res Commun ; 414(1): 259-64, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21951848

RESUMO

Argonaute proteins are the core components of the RNA-induced silencing complex, the central effector of the mammalian RNA interference pathway. In the cytoplasm, they associate with at least two types of cytoplasmic RNA granules; processing bodies and stress granules, which function in mRNA degradation and translational repression, respectively. The significance of Argonaute association with these RNA granules is not entirely clear but it is likely related to their activities within the RNAi pathway. Understanding what regulates targeting of Argonautes to RNA granules may provide clues as to their functions at these organelles. To this end, there are a number of conflicting reports that describe the role of small RNAs in targeting Argonaute proteins in mammalian cells. We employed quantitative microscopic analyses of human Argonaute 2 (hAgo2) mutants to study factors that govern localization of this RNA-binding protein to cytoplasmic RNA granules. We report, for the first time, that hAgo2 is recruited to stress granules as a consequence of its interaction with miRNAs. Moreover, loading of small RNAs onto hAgo2 is not required for its stability, suggesting that a pool of unloaded hAgo2 may exist for extended periods of time in the cytoplasm.


Assuntos
Proteínas Argonautas/metabolismo , Grânulos Citoplasmáticos/metabolismo , MicroRNAs/metabolismo , Proteínas Argonautas/genética , Células HeLa , Humanos , Mutação , Estabilidade Proteica , Transporte Proteico/genética
7.
Methods Mol Biol ; 725: 161-72, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21528453

RESUMO

The central effector of mammalian RNA interference (RNAi) is the RNA-induced silencing complex (RISC). Proteins of the Argonaute family are the core components of RISC. Recent work from multiple laboratories has shown that Argonaute family members are associated with at least two types of cytoplasmic RNA granules: GW/Processing bodies and stress granules. These Argonaute-containing granules harbor proteins that function in mRNA degradation and translational repression in response to stress. The known role of Argonaute proteins in miRNA-mediated translational repression and siRNA-directed mRNA cleavage (i.e., Argonaute 2) has prompted speculation that the association of Argonautes with these granules may reflect the activity of RNAi in vivo. Accordingly, studying the dynamic association between Argonautes and RNA granules in living cells will undoubtedly provide insight into the regulatory mechanisms of RNA-based silencing. This chapter describes a method for imaging fluorescently tagged Argonaute proteins in living mammalian cells using spinning disk confocal microscopy.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Imagem Molecular , Proteínas Argonautas , Arsenitos/farmacologia , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/genética , Vetores Genéticos/genética , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Imagem Molecular/instrumentação , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Teratogênicos/farmacologia , Transfecção
8.
Traffic ; 11(1): 25-36, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19883398

RESUMO

Argonaute proteins are the effectors of small RNA-dependent gene-silencing pathways. In the cytoplasm, they are incorporated into large mobile ribonucleoprotein (RNP) complexes that travel along microtubules. We used a genetic screen to identify the microtubule-associated motor that interacts with Ago1-containing RNPs. Here, we report that activity of the kinesin family member Cut7 is important for biogenesis and/or stability of Ago1-containing RNPs in the cytoplasm. Results from pulldown and coimmunoprecipitation assays indicate that Cut7 interacts with Ago1 as well as its two cognate binding proteins, Dcr1 and Rdp1. Loss of Cut7 activity was associated with increased levels of reverse centromeric transcripts, presumably because of a defect in post-transcriptional gene silencing. Overexpression of the Ago1-binding region of Cut7 resulted in loss of microscopic Ago1-containing RNPs. Together, these results suggest that microtubule motor proteins function in the biogenesis and function of gene-silencing machinery in the cytoplasm.


Assuntos
Cinesinas/fisiologia , Interferência de RNA , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/fisiologia , Proteínas de Schizosaccharomyces pombe/biossíntese , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/metabolismo , Proteínas Argonautas , Sítios de Ligação , Citoplasma/genética , Citoplasma/metabolismo , Escherichia coli/genética , Proteínas de Fluorescência Verde/genética , Cinesinas/genética , Proteínas Luminescentes/genética , Microscopia Confocal , Microtúbulos/genética , Microtúbulos/metabolismo , Mutação , Plasmídeos , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/ultraestrutura , Proteínas de Schizosaccharomyces pombe/genética , Temperatura , Proteína Vermelha Fluorescente
9.
Mol Biol Cell ; 20(14): 3273-84, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19458189

RESUMO

Argonaute proteins are effectors of RNA interference that function in the context of cytoplasmic ribonucleoprotein complexes to regulate gene expression. Processing bodies (PBs) and stress granules (SGs) are the two main types of ribonucleoprotein complexes with which Argonautes are associated. Targeting of Argonautes to these structures seems to be regulated by different factors. In the present study, we show that heat-shock protein (Hsp) 90 activity is required for efficient targeting of hAgo2 to PBs and SGs. Furthermore, pharmacological inhibition of Hsp90 was associated with reduced microRNA- and short interfering RNA-dependent gene silencing. Neither Dicer nor its cofactor TAR RNA binding protein (TRBP) associates with PBs or SGs, but interestingly, protein activator of the double-stranded RNA-activated protein kinase (PACT), another Dicer cofactor, is recruited to SGs. Formation of PBs and recruitment of hAgo2 to SGs were not dependent upon PACT (or TRBP) expression. Together, our data suggest that Hsp90 is a critical modulator of Argonaute function. Moreover, we propose that Ago2 and PACT form a complex that functions at the level of SGs.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Animais , Antígenos de Superfície/metabolismo , Proteínas Argonautas , Benzoquinonas/farmacologia , Linhagem Celular , Grânulos Citoplasmáticos/efeitos dos fármacos , Drosophila , Inativação Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Lactamas Macrocíclicas/farmacologia , Camundongos , MicroRNAs/metabolismo , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Ribonuclease III/metabolismo
10.
EMBO Rep ; 8(2): 188-93, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17186027

RESUMO

Mitochondria have crucial roles in the life and death of mammalian cells, and help to orchestrate host antiviral defences. Here, we show that the ubiquitous human pathogen herpes simplex virus (HSV) induces rapid and complete degradation of host mitochondrial DNA during productive infection of cultured mammalian cells. The depletion of mitochondrial DNA requires the viral UL12 gene, which encodes a conserved nuclease with orthologues in all herpesviruses. We show that an amino-terminally truncated UL12 isoform-UL12.5-localizes to mitochondria and triggers mitochondrial DNA depletion in the absence of other HSV gene products. By contrast, full-length UL12, a nuclear protein, has little or no effect on mitochondrial DNA levels. Our data document that HSV inflicts massive genetic damage to a crucial host organelle and show a novel mechanism of virus-induced shutoff of host functions, which is likely to contribute to the cell death and tissue damage caused by this widespread human pathogen.


Assuntos
DNA Mitocondrial/metabolismo , Ribonucleases/metabolismo , Simplexvirus/enzimologia , Proteínas Virais/metabolismo , Animais , Northern Blotting , Southern Blotting , Chlorocebus aethiops , Citometria de Fluxo , Células HeLa , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Células Vero
11.
J Cell Biol ; 174(3): 349-58, 2006 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-16880270

RESUMO

In mammalian cells, the GW182 protein localizes to cytoplasmic bodies implicated in the regulation of messenger RNA (mRNA) stability, translation, and the RNA interference pathway. Many of these functions have also been assigned to analogous yeast cytoplasmic mRNA processing bodies. We have characterized the single Drosophila melanogaster homologue of the human GW182 protein family, which we have named Gawky (GW). Drosophila GW localizes to punctate, cytoplasmic foci in an RNA-dependent manner. Drosophila GW bodies (GWBs) appear to function analogously to human GWBs, as human GW182 colocalizes with GW when expressed in Drosophila cells. The RNA-induced silencing complex component Argonaute2 and orthologues of LSm4 and Xrn1 (Pacman) associated with 5'-3' mRNA degradation localize to some GWBs. Reducing GW activity by mutation or antibody injection during syncytial embryo development leads to abnormal nuclear divisions, demonstrating an early requirement for GWB-mediated cytoplasmic mRNA regulation. This suggests that gw represents a previously unknown member of a small group of genes that need to be expressed zygotically during early embryo development.


Assuntos
Estruturas Citoplasmáticas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , RNA Mensageiro/metabolismo , Animais , Anticorpos/imunologia , Divisão do Núcleo Celular , Segregação de Cromossomos , Estruturas Citoplasmáticas/ultraestrutura , Proteínas de Drosophila/química , Proteínas de Drosophila/deficiência , Drosophila melanogaster/citologia , Drosophila melanogaster/ultraestrutura , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/ultraestrutura , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mutação/genética , Filogenia , Transporte Proteico , Zigoto/citologia , Zigoto/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA