Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38534465

RESUMO

γδ T-cells provide immune surveillance against cancer, straddling both innate and adaptive immunity. G115 is a clonal γδ T-cell receptor (TCR) of the Vγ9Vδ2 subtype which can confer responsiveness to phosphoantigens (PAgs) when genetically introduced into conventional αß T-cells. Cancer immunotherapy using γδ TCR-engineered T-cells is currently under clinical evaluation. In this study, we sought to broaden the cancer specificity of the G115 γδ TCR by insertion of a tumour-binding peptide into the complementarity-determining region (CDR) three regions of the TCR δ2 chain. Peptides were selected from the foot and mouth disease virus A20 peptide which binds with high affinity and selectivity to αvß6, an epithelial-selective integrin that is expressed by a range of solid tumours. Insertion of an A20-derived 12mer peptide achieved the best results, enabling the resulting G115 + A12 T-cells to kill both PAg and αvß6-expressing tumour cells. Cytolytic activity of G115 + A12 T-cells against PAg-presenting K562 target cells was enhanced compared to G115 control cells, in keeping with the critical role of CDR3 δ2 length for optimal PAg recognition. Activation was accompanied by interferon (IFN)-γ release in the presence of either target antigen, providing a novel dual-specificity approach for cancer immunotherapy.

2.
J Immunother Cancer ; 11(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37321663

RESUMO

BACKGROUND: Locally advanced/recurrent head and neck squamous cell carcinoma (HNSCC) is associated with significant morbidity and mortality. To target upregulated ErbB dimer expression in this cancer, we developed an autologous CD28-based chimeric antigen receptor T-cell (CAR-T) approach named T4 immunotherapy. Patient-derived T-cells are engineered by retroviral transduction to coexpress a panErbB-specific CAR called T1E28ζ and an IL-4-responsive chimeric cytokine receptor, 4αß, which allows IL-4-mediated enrichment of transduced cells during manufacture. These cells elicit preclinical antitumor activity against HNSCC and other carcinomas. In this trial, we used intratumoral delivery to mitigate significant clinical risk of on-target off-tumor toxicity owing to low-level ErbB expression in healthy tissues. METHODS: We undertook a phase 1 dose-escalation 3+3 trial of intratumoral T4 immunotherapy in HNSCC (NCT01818323). CAR T-cell batches were manufactured from 40 to 130 mL of whole blood using a 2-week semiclosed process. A single CAR T-cell treatment, formulated as a fresh product in 1-4 mL of medium, was injected into one or more target lesions. Dose of CAR T-cells was escalated in 5 cohorts from 1×107-1×109 T4+ T-cells, administered without prior lymphodepletion. RESULTS: Despite baseline lymphopenia in most enrolled subjects, the target cell dose was successfully manufactured in all cases, yielding up to 7.5 billion T-cells (67.5±11.8% transduced), without any batch failures. Treatment-related adverse events were all grade 2 or less, with no dose-limiting toxicities (Common Terminology Criteria for Adverse Events V.4.0). Frequent treatment-related adverse events were tumor swelling, pain, pyrexias, chills, and fatigue. There was no evidence of leakage of T4+ T-cells into the circulation following intratumoral delivery, and injection of radiolabeled cells demonstrated intratumoral persistence. Despite rapid progression at trial entry, stabilization of disease (Response Evaluation Criteria in Solid Tumors V.1.1) was observed in 9 of 15 subjects (60%) at 6 weeks post-CAR T-cell administration. Subsequent treatment with pembrolizumab and T-VEC oncolytic virus achieved a rapid complete clinical response in one subject, which was durable for over 3 years. Median overall survival was greater than for historical controls. Disease stabilization was associated with the administration of an immunophenotypically fitter, less exhausted, T4 CAR T-cell product. CONCLUSIONS: These data demonstrate the safe intratumoral administration of T4 immunotherapy in advanced HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Receptores de Antígenos Quiméricos , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Interleucina-4 , Recidiva Local de Neoplasia , Imunoterapia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico
3.
STAR Protoc ; 3(2): 101319, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496793

RESUMO

Clinical trials that tested the antitumor activity of γδ T cells have been mostly unsuccessful. To address this, we expanded human Vγ9Vδ2 T cells in TGFß1, a cytokine which enhances their viability, trafficking properties, and intrinsic antitumor activity. This protocol summarizes the production and in vitro functional characterization of TGFß1 educated human Vγ9Vδ2 cells and highlights their compatibility with chimeric antigen receptor (CAR) engineering. We also describe in vivo testing of the antitumor activity of these CAR T cells in mice. For complete details on the use and execution of this protocol, please refer to Beatson et al. (2021).


Assuntos
Receptores de Antígenos Quiméricos , Fator de Crescimento Transformador beta , Animais , Citocinas , Humanos , Camundongos , Linfócitos T
4.
Cells ; 10(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34359966

RESUMO

Adoptive cancer immunotherapy using chimeric antigen receptor (CAR) engineered T-cells holds great promise, although several obstacles hinder the efficient generation of cell products under good manufacturing practice (GMP). Patients are often immune compromised, rendering it challenging to produce sufficient numbers of gene-modified cells. Manufacturing protocols are labour intensive and frequently involve one or more open processing steps, leading to increased risk of contamination. We set out to develop a simplified process to generate autologous gamma retrovirus-transduced T-cells for clinical evaluation in patients with head and neck cancer. T-cells were engineered to co-express a panErbB-specific CAR (T1E28z) and a chimeric cytokine receptor (4αß) that permits their selective expansion in response to interleukin (IL)-4. Using peripheral blood as starting material, sterile culture procedures were conducted in gas-permeable bags under static conditions. Pre-aliquoted medium and cytokines, bespoke connector devices and sterile welding/sealing were used to maximise the use of closed manufacturing steps. Reproducible IL-4-dependent expansion and enrichment of CAR-engineered T-cells under GMP was achieved, both from patients and healthy donors. We also describe the development and approach taken to validate a panel of monitoring and critical release assays, which provide objective data on cell product quality.


Assuntos
Citocinas/metabolismo , Interleucina-4/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Citotoxicidade Imunológica/imunologia , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/genética , Linfócitos T/imunologia , Transdução Genética
5.
Cell Rep Med ; 2(12): 100473, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35028614

RESUMO

Despite its role in cancer surveillance, adoptive immunotherapy using γδ T cells has achieved limited efficacy. To enhance trafficking to bone marrow, circulating Vγ9Vδ2 T cells are expanded in serum-free medium containing TGF-ß1 and IL-2 (γδ[T2] cells) or medium containing IL-2 alone (γδ[2] cells, as the control). Unexpectedly, the yield and viability of γδ[T2] cells are also increased by TGF-ß1, when compared to γδ[2] controls. γδ[T2] cells are less differentiated and yet display increased cytolytic activity, cytokine release, and antitumor activity in several leukemic and solid tumor models. Efficacy is further enhanced by cancer cell sensitization using aminobisphosphonates or Ara-C. A number of contributory effects of TGF-ß are described, including prostaglandin E2 receptor downmodulation, TGF-ß insensitivity, and upregulated integrin activity. Biological relevance is supported by the identification of a favorable γδ[T2] signature in acute myeloid leukemia (AML). Given their enhanced therapeutic activity and compatibility with allogeneic use, γδ[T2] cells warrant evaluation in cancer immunotherapy.


Assuntos
Imunoterapia Adotiva , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células da Medula Óssea/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Meios de Cultura Livres de Soro/farmacologia , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Humanos , Imunofenotipagem , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Ativação Linfocitária , Camundongos SCID , Prognóstico
6.
Cancers (Basel) ; 11(5)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091832

RESUMO

Despite the unprecedented clinical success of chimeric antigen receptors (CAR) T-cells against haematological malignancy, solid tumors impose a far greater challenge to success. Largely, this stems from an inadequate capacity of CAR T-cells that can traffic and maintain function within a hostile microenvironment. To enhance tumor-directed T-cell trafficking, we have engineered CAR T-cells to acquire heightened responsiveness to interleukin (IL)-8. Circulating IL-8 levels correlate with disease burden and prognosis in multiple solid tumors in which it exerts diverse pathological functions including angiogenesis, support of cancer stem cell survival, and recruitment of immunosuppressive myeloid cells. To harness tumor-derived IL-8 for therapeutic benefit, we have co-expressed either of its cognate receptors (CXCR1 or CXCR2) in CAR T-cells that target the tumor-associated αvß6 integrin. We demonstrate here that CXCR2-expressing CAR T-cells migrate more efficiently towards IL-8 and towards tumor conditioned media that contains this cytokine. As a result, these CAR T-cells elicit superior anti-tumor activity against established αvß6-expressing ovarian or pancreatic tumor xenografts, with a more favorable toxicity profile. These data support the further engineering of CAR T-cells to acquire responsiveness to cancer-derived chemokines in order to improve their therapeutic activity against solid tumors.

7.
Mol Ther ; 27(1): 219-229, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30429045

RESUMO

Gammadelta T (γδ-T) cells are strong candidates for adoptive immunotherapy in oncology due to their cytotoxicity, ease of expansion, and favorable safety profile. The development of γδ-T cell therapies would benefit from non-invasive cell-tracking methods and increased targeting to tumor sites. Here we report the use of [89Zr]Zr(oxinate)4 to track Vγ9Vδ2 T cells in vivo by positron emission tomography (PET). In vitro, we showed that 89Zr-labeled Vγ9Vδ2 T cells retained their viability, proliferative capacity, and anti-cancer cytotoxicity with minimal DNA damage for amounts of 89Zr ≤20 mBq/cell. Using a mouse xenograft model of human breast cancer, 89Zr-labeled γδ-T cells were tracked by PET imaging over 1 week. To increase tumor antigen expression, the mice were pre-treated with PEGylated liposomal alendronate. Liposomal alendronate, but not placebo liposomes or non-liposomal alendronate, significantly increased the 89Zr signal in the tumors, suggesting increased homing of γδ-T cells to the tumors. γδ-T cell trafficking to tumors occurred within 48 hr of administration. The presence of γδ-T cells in tumors, liver, and spleen was confirmed by histology. Our results demonstrate the suitability of [89Zr]Zr(oxinate)4 as a cell-labeling agent for therapeutic T cells and the potential benefits of liposomal bisphosphonate treatment before γδ-T cell administration.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia , Tomografia por Emissão de Pósitrons/métodos , Linfócitos T/citologia , Alendronato/uso terapêutico , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Difosfonatos/uso terapêutico , Feminino , Humanos , Imunoterapia Adotiva , Camundongos , Nanomedicina/métodos , Linfócitos T/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancer Immunol Immunother ; 67(11): 1753-1765, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30167862

RESUMO

Epithelial ovarian cancer (EOC) is the most lethal of all gynecological malignancies in the UK. Recent evidence has shown that there is potential for immunotherapies to be successful in treating this cancer. We have previously shown the effective application of combinations of traditional chemotherapy and CAR (chimeric antigen receptor) T cell immunotherapy in in vitro and in vivo models of EOC. Platinum-based chemotherapy synergizes with ErbB-targeted CAR T cells (named T4), significantly reducing tumor burden in mice. Here, we show that paclitaxel synergizes with T4 as well, and look into the mechanisms behind the effectiveness of chemo-immunotherapy in our system. Impairment of caspase activity using pan-caspase inhibitor Z-VAD reveals this chemotherapy-induced apoptotic pathway as an essential factor in driving synergy. Mannose-6-phosphate receptor-mediated autophagy and the arrest of cell cycle in G2/M are also shown to be induced by chemotherapy and significantly contributing to the synergy. Increased expression of PD-1 on T4 CAR T cells occurred when these were in culture with ovarian tumor cells; on the other hand, EOC cell lines showed increased PD-L1 expression following chemotherapy treatment. These findings provided a rationale to look into testing PD-1 blockade in combination with paclitaxel and T4 immunotherapy. Combination of these three agents in mice resulted in significant reduction of tumor burden, compared to each treatment alone. In conclusion, the mechanism driving synergy in chemo-immunotherapy of EOC is multifactorial. A deeper understanding of such process is needed to better design combination therapies and carefully stratify patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Autofagia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sinergismo Farmacológico , Imunoterapia , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/patologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Carboplatina/administração & dosagem , Carcinoma Epitelial do Ovário , Combinação de Medicamentos , Feminino , Humanos , Camundongos , Camundongos SCID , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Epiteliais e Glandulares/imunologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/imunologia , Paclitaxel/administração & dosagem , Células Tumorais Cultivadas
9.
Oncoimmunology ; 6(12): e1363137, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209570

RESUMO

Mesothelioma is an incurable cancer for which effective therapies are required. Aberrant MET expression is prevalent in mesothelioma, although targeting using small molecule-based therapeutics has proven disappointing. Chimeric antigen receptors (CARs) couple the HLA-independent binding of a cell surface target to the delivery of a tailored T-cell activating signal. Here, we evaluated the anti-tumor activity of MET re-targeted CAR T-cells against mesothelioma. Using immunohistochemistry, MET was detected in 67% of malignant pleural mesotheliomas, most frequently of epithelioid or biphasic subtype. The presence of MET did not influence patient survival. Candidate MET-specific CARs were engineered in which a CD28+CD3ζ endodomain was fused to one of 3 peptides derived from the N and K1 domains of hepatocyte growth factor (HGF), which represents the minimum MET binding element present in this growth factor. Using an NIH3T3-based artificial antigen-presenting cell system, we found that all 3 candidate CARs demonstrated high specificity for MET. By contrast, these CARs did not mediate T-cell activation upon engagement of other HGF binding partners, namely CD44v6 or heparan sulfate proteoglycans, including Syndecan-1. NK1-targeted CARs demonstrated broadly similar in vitro potency, indicated by destruction of MET-expressing mesothelioma cell lines, accompanied by cytokine release. In vivo anti-tumor activity was demonstrated following intraperitoneal delivery to mice with an established mesothelioma xenograft. Progressive tumor regression occurred without weight loss or other clinical indicators of toxicity. These data confirm the frequent expression of MET in malignant pleural mesothelioma and demonstrate that this can be targeted effectively and safely using a CAR T-cell immunotherapeutic strategy.

11.
Cancer Lett ; 393: 52-59, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28223167

RESUMO

Malignant mesothelioma remains an incurable cancer. We demonstrated that mesotheliomas expressed EGFR (79.2%), ErbB4 (49.0%) and HER2 (6.3%), but lacked ErbB3. At least one ErbB family member was expressed in 88% of tumors. To exploit ErbB dysregulation in this disease, patient T-cells were engineered by retroviral transduction to express a panErbB-targeted chimeric antigen receptor (CAR), co-expressed with a chimeric cytokine receptor that allows interleukin (IL)-4 mediated CAR T-cell proliferation. This combination is referred to as T4 immunotherapy. T-cells from mesothelioma patients were uniformly amenable to T4 genetic modification and expansion/enrichment thereafter using IL-4. Patient-derived T4+ T-cells were activated upon contact with a panel of four mesothelioma cell lines, leading to cytotoxicity and cytokine release in all cases. Adoptive transfer of T4 immunotherapy to SCID Beige mice with an established bioluminescent LO68 mesothelioma xenograft was followed by regression or eradication of disease in all animals. Despite the established ability of T4 immunotherapy to elicit cytokine release syndrome in SCID Beige mice, therapy was very well tolerated. These findings provide a strong rationale for the clinical evaluation of intracavitary T4 immunotherapy to treat mesothelioma.


Assuntos
Receptores ErbB/metabolismo , Terapia Genética/métodos , Imunoterapia Adotiva/métodos , Interleucina-4/metabolismo , Neoplasias Pulmonares/terapia , Linfócitos do Interstício Tumoral/transplante , Mesotelioma/terapia , Neoplasias Pleurais/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/transplante , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura , Receptores ErbB/imunologia , Humanos , Interleucina-4/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Mesotelioma/genética , Mesotelioma/imunologia , Mesotelioma/metabolismo , Mesotelioma Maligno , Camundongos SCID , Neoplasias Pleurais/genética , Neoplasias Pleurais/imunologia , Neoplasias Pleurais/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-4/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo , Transdução Genética , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mol Ther ; 25(1): 259-273, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28129120

RESUMO

Expression of the αvß6 integrin is upregulated in several solid tumors. In contrast, physiologic expression of this epithelial-specific integrin is restricted to development and epithelial re-modeling. Here, we describe, for the first time, the development of a chimeric antigen receptor (CAR) that couples the recognition of this integrin to the delivery of potent therapeutic activity in a diverse repertoire of solid tumor models. Highly selective targeting αvß6 was achieved using a foot and mouth disease virus-derived A20 peptide, coupled to a fused CD28+CD3 endodomain. To achieve selective expansion of CAR T cells ex vivo, an IL-4-responsive fusion gene (4αß) was co-expressed, which delivers a selective mitogenic signal to engineered T cells only. In vivo efficacy was demonstrated in mice with established ovarian, breast, and pancreatic tumor xenografts, all of which express αvß6 at intermediate to high levels. SCID beige mice were used for these studies because they are susceptible to cytokine release syndrome, unlike more immune-compromised strains. Nonetheless, although the CAR also engages mouse αvß6, mild and reversible toxicity was only observed when supra-therapeutic doses of CAR T cells were administered parenterally. These data support the clinical evaluation of αvß6 re-targeted CAR T cell immunotherapy in solid tumors that express this integrin.


Assuntos
Antígenos de Neoplasias/imunologia , Engenharia Celular , Integrinas/antagonistas & inibidores , Integrinas/imunologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Antígenos de Neoplasias/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Ordem dos Genes , Vetores Genéticos/genética , Imunoterapia Adotiva , Integrinas/genética , Camundongos , Camundongos SCID , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
ACS Nano ; 10(11): 10294-10307, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27781436

RESUMO

The clinical value of current and future nanomedicines can be improved by introducing patient selection strategies based on noninvasive sensitive whole-body imaging techniques such as positron emission tomography (PET). Thus, a broad method to radiolabel and track preformed nanomedicines such as liposomal drugs with PET radionuclides will have a wide impact in nanomedicine. Here, we introduce a simple and efficient PET radiolabeling method that exploits the metal-chelating properties of certain drugs (e.g., bisphosphonates such as alendronate and anthracyclines such as doxorubicin) and widely used ionophores to achieve excellent radiolabeling yields, purities, and stabilities with 89Zr, 52Mn, and 64Cu, and without the requirement of modification of the nanomedicine components. In a model of metastatic breast cancer, we demonstrate that this technique allows quantification of the biodistribution of a radiolabeled stealth liposomal nanomedicine containing alendronate that shows high uptake in primary tumors and metastatic organs. The versatility, efficiency, simplicity, and GMP compatibility of this method may enable submicrodosing imaging studies of liposomal nanomedicines containing chelating drugs in humans and may have clinical impact by facilitating the introduction of image-guided therapeutic strategies in current and future nanomedicine clinical studies.


Assuntos
Radioisótopos de Cobre , Lipossomos , Nanomedicina , Tomografia por Emissão de Pósitrons , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Manganês , Radioisótopos , Distribuição Tecidual , Zircônio
14.
J Control Release ; 241: 229-241, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27664328

RESUMO

Nitrogen-containing bisphosphonates (N-BP), including zoledronic acid (ZOL) and alendronate (ALD), have been proposed as sensitisers in γδ T cell immunotherapy in pre-clinical and clinical studies. Therapeutic efficacy of N-BPs is hampered by their rapid renal excretion and high affinity for bone. Liposomal formulations of N-BP have been proposed to improve accumulation in solid tumours. Liposomal ALD (L-ALD) has been suggested as a suitable alternative to liposomal ZOL (L-ZOL), due to unexpected mice death experienced in pre-clinical studies with the latter. Only one study so far has proven the therapeutic efficacy of L-ALD, in combination with γδ T cell immunotherapy, after intraperitoneal administration of γδ T cell resulting in delayed growth of ovarian cancer in mice. This study aims to assess the in vitro efficacy of L-ALD, in combination with γδ T cell immunotherapy, in a range of cancerous cell lines, using L-ZOL as a comparator. The therapeutic efficacy was tested in a pseudo-metastatic lung mouse model, following intravenous injection of γδ T cell, L-ALD or the combination. In vivo biocompatibility and organ biodistribution studies of L-N-BPs were undertaken simultaneously. Higher concentrations of L-ALD (40-60µM) than L-ZOL (3-10µM) were required to produce a comparative reduction in cell viability in vitro, when used in combination with γδ T cells. Significant inhibition of tumour growth was observed after treatment with both L-ALD and γδ T cells in pseudo-metastatic lung melanoma tumour-bearing mice after tail vein injection of both treatments, suggesting that therapeutically relevant concentrations of L-ALD and γδ T cell could be achieved in the tumour sites, resulting in significant delay in tumour growth.


Assuntos
Alendronato/uso terapêutico , Imunoterapia Adotiva/métodos , Neoplasias Experimentais/terapia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/efeitos dos fármacos , Alendronato/administração & dosagem , Alendronato/toxicidade , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Técnicas de Cocultura , Citotoxicidade Imunológica , Humanos , Interferon gama/sangue , Lipossomos , Masculino , Camundongos SCID , Neoplasias Experimentais/tratamento farmacológico , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Adv Healthc Mater ; 4(8): 1180-9, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25866054

RESUMO

Adoptive T cell immunotherapy is a promising treatment strategy for epithelial ovarian cancer (EOC). However, programmed death ligand-1 (PD-L1), highly expressed on EOC cells, interacts with programmed death-1 (PD-1), expressed on T cells, causing immunosuppression. This study aims to block PD-1/PD-L1 interactions by delivering PD-L1 siRNA, using various folic acid (FA)-functionalized polyethylenimine (PEI) polymers, to SKOV-3-Luc EOC cells, and investigate the sensitization of the EOC cells to T cell killing. To enhance siRNA uptake into EOC cells, which over express folate receptors, PEI is modified with FA or PEG-FA so that siRNA is complexed into nanoparticles with folate molecules on the surface. PEI modification with a single functional group lowers the polymer cytotoxicity compared to unmodified PEI. FA-conjugated polymers increase siRNA uptake into SKOV-3-luc cells and decrease unspecific uptake into monocytes. All polymers result in 40% to 50% PD-L1 protein knockdown. Importantly, SKOV-3-Luc cells treated with either PEI-FA or PEI- polyethylene glycol (PEG)-FA/PD-L1 siRNA complexes are up to twofold more sensitive to T cell killing compared to scrambled siRNA treated controls. These findings are the first to demonstrate that PD-L1 knockdown in EOC cells, via siRNA/FA-targeted delivery, are able to sensitize cancer cells to T cell killing.


Assuntos
Antígeno B7-H1/genética , Ácido Fólico/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Polietilenoimina/metabolismo , RNA Interferente Pequeno/genética , Antígeno B7-H1/metabolismo , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Terapia Genética , Humanos , Imunoterapia/métodos , Proteína 1 de Membrana Associada ao Lisossomo/genética , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Nanopartículas/química , Neoplasias Epiteliais e Glandulares/terapia , Neoplasias Ovarianas/terapia , Tamanho da Partícula , Polietilenoglicóis/química , Polímeros/química , Linfócitos T/metabolismo
16.
J Immunol ; 193(11): 5557-66, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25339667

RESUMO

Adoptive immunotherapy using γδ T cells harnesses their natural role in tumor immunosurveillance. The efficacy of this approach is enhanced by aminobisphosphonates such as zoledronic acid and alendronic acid, both of which promote the accumulation of stimulatory phosphoantigens in target cells. However, the inefficient and nonselective uptake of these agents by tumor cells compromises the effective clinical exploitation of this principle. To overcome this, we have encapsulated aminobisphosphonates within liposomes. Expanded Vγ9Vδ2 T cells from patients and healthy donors displayed similar phenotype and destroyed autologous and immortalized ovarian tumor cells, following earlier pulsing with either free or liposome-encapsulated aminobisphosphonates. However, liposomal zoledronic acid proved highly toxic to SCID Beige mice. By contrast, the maximum tolerated dose of liposomal alendronic acid was 150-fold higher, rendering it much more suited to in vivo use. When injected into the peritoneal cavity, free and liposomal alendronic acid were both highly effective as sensitizing agents, enabling infused γδ T cells to promote the regression of established ovarian tumors by over one order of magnitude. Importantly however, liposomal alendronic acid proved markedly superior compared with free drug following i.v. delivery, exploiting the "enhanced permeability and retention effect" to render advanced tumors susceptible to γδ T cell-mediated shrinkage. Although folate targeting of liposomes enhanced the sensitization of folate receptor-α(+) ovarian tumor cells in vitro, this did not confer further therapeutic advantage in vivo. These findings support the development of an immunotherapeutic approach for ovarian and other tumors in which adoptively infused γδ T cells are targeted using liposomal alendronic acid.


Assuntos
Alendronato/administração & dosagem , Carcinoma/terapia , Imunoterapia Adotiva/métodos , Neoplasias Ovarianas/terapia , Linfócitos T/efeitos dos fármacos , Alendronato/química , Animais , Carcinoma/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Feminino , Humanos , Imunização , Lipossomos/química , Camundongos , Camundongos SCID , Neoplasias Ovarianas/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/imunologia , Linfócitos T/transplante , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Immunol ; 191(9): 4589-98, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24062490

RESUMO

The ErbB network is dysregulated in many solid tumors. To exploit this, we have developed a chimeric Ag receptor (CAR) named T1E28z that targets several pathogenetically relevant ErbB dimers. T1E28z is coexpressed with a chimeric cytokine receptor named 4αß (combination termed T4), enabling the selective expansion of engineered T cells using IL-4. Human T4(+) T cells exhibit antitumor activity against several ErbB(+) cancer types. However, ErbB receptors are also expressed in several healthy tissues, raising concerns about toxic potential. In this study, we have evaluated safety of T4 immunotherapy in vivo using a SCID beige mouse model. We show that the human T1E28z CAR efficiently recognizes mouse ErbB(+) cells, rendering this species suitable to evaluate preclinical toxicity. Administration of T4(+) T cells using the i.v. or intratumoral routes achieves partial tumor regression without clinical or histopathologic toxicity. In contrast, when delivered i.p., tumor reduction is accompanied by dose-dependent side effects. Toxicity mediated by T4(+) T cells results from target recognition in both tumor and healthy tissues, leading to release of both human (IL-2/IFN-γ) and murine (IL-6) cytokines. In extreme cases, outcome is lethal. Both toxicity and IL-6 release can be ameliorated by prior macrophage depletion, consistent with clinical data that implicate IL-6 in this pathogenic event. These data demonstrate that CAR-induced cytokine release syndrome can be modeled in mice that express target Ag in an appropriate distribution. Furthermore, our findings argue that ErbB-retargeted T cells can achieve therapeutic benefit in the absence of unacceptable toxicity, providing that route of administration and dose are carefully optimized.


Assuntos
Imunoterapia Adotiva , Neoplasias/imunologia , Proteínas Oncogênicas v-erbB/metabolismo , Proteínas Recombinantes de Fusão/uso terapêutico , Linfócitos T/metabolismo , Animais , Linhagem Celular , Humanos , Interferon gama/biossíntese , Interferon gama/metabolismo , Interleucina-2/biossíntese , Interleucina-2/metabolismo , Interleucina-4 , Interleucina-6/biossíntese , Interleucina-6/metabolismo , Macrófagos , Camundongos , Camundongos SCID , Neoplasias/terapia , Transdução de Sinais
18.
J Immunol ; 191(5): 2437-45, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23898037

RESUMO

Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy, underscoring the need for better therapies. Adoptive immunotherapy using genetically targeted T cells represents a promising new treatment for hematologic malignancies. However, solid tumors impose additional obstacles, including the lack of suitable targets for safe systemic therapy and the need to achieve effective T cell homing to sites of disease. Because EOC undergoes transcœlomic metastasis, both of these challenges may be circumvented by T cell administration to the peritoneal cavity. In this study, we describe such an immunotherapeutic approach for EOC, in which human T cells were targeted against the extended ErbB family, using a chimeric Ag receptor named T1E28z. T1E28z was coexpressed with a chimeric cytokine receptor named 4αß (combination termed T4), enabling the selective ex vivo expansion of engineered T cells using IL-4. Unlike control T cells, T4(+) T cells from healthy donors and patients with EOC were activated by and destroyed ErbB(+) EOC tumor cell lines and autologous tumor cultures. In vivo antitumor activity was demonstrated in mice bearing established luciferase-expressing SKOV-3 EOC xenografts. Tumor regression was accompanied by mild toxicity, manifested by weight loss. Although efficacy was transient, therapeutic response could be prolonged by repeated T cell administration. Furthermore, prior treatment with noncytotoxic doses of carboplatin sensitized SKOV-3 tumors to T4 immunotherapy, promoting enhanced disease regression using lower doses of T4(+) T cells. By combining these approaches, we demonstrate that repeated administration of carboplatin followed by T4(+) T cells achieved optimum therapeutic benefit in the absence of significant toxicity, even in mice with advanced tumor burdens.


Assuntos
Antineoplásicos/administração & dosagem , Carboplatina/administração & dosagem , Receptores ErbB/imunologia , Imunoterapia Adotiva/métodos , Neoplasias Epiteliais e Glandulares/terapia , Neoplasias Ovarianas/terapia , Linfócitos T/imunologia , Animais , Carcinoma Epitelial do Ovário , Terapia Combinada , Tratamento Farmacológico/métodos , Feminino , Citometria de Fluxo , Humanos , Camundongos , Proteínas Recombinantes de Fusão/imunologia , Transdução Genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Mol Med ; 18: 565-76, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22354215

RESUMO

Pharmacological targeting of individual ErbB receptors elicits antitumor activity, but is frequently compromised by resistance leading to therapeutic failure. Here, we describe an immunotherapeutic approach that exploits prevalent and fundamental mechanisms by which aberrant upregulation of the ErbB network drives tumorigenesis. A chimeric antigen receptor named T1E28z was engineered, in which the promiscuous ErbB ligand, T1E, is fused to a CD28 + CD3ζ endodomain. Using a panel of ErbB-engineered 32D hematopoietic cells, we found that human T1E28z⁺ T cells are selectively activated by all ErbB1-based homodimers and heterodimers and by the potently mitogenic ErbB2/3 heterodimer. Owing to this flexible targeting capability, recognition and destruction of several tumor cell lines was achieved by T1E28⁺ T cells in vitro, comprising a wide diversity of ErbB receptor profiles and tumor origins. Furthermore, compelling antitumor activity was observed in mice bearing established xenografts, characterized either by ErbB1/2 or ErbB2/3 overexpression and representative of insidious or rapidly progressive tumor types. Together, these findings support the clinical development of a broadly applicable immunotherapeutic approach in which the propensity of solid tumors to dysregulate the extended ErbB network is targeted for therapeutic gain.


Assuntos
Transformação Celular Neoplásica/genética , Multimerização Proteica/efeitos dos fármacos , Receptor ErbB-2/genética , Linfócitos T/metabolismo , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Feminino , Engenharia Genética , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Interleucina-4/imunologia , Interleucina-4/metabolismo , Camundongos , Camundongos SCID , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Receptores de Antígenos/genética , Receptores de Antígenos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/imunologia , Transdução Genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA