Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588382

RESUMO

Nitrogen vacancy (NV) center-based magnetometry has been proven to be a versatile sensor for various classes of magnetic materials in broad temperature and frequency ranges. Here, we use the longitudinal relaxation time T1 of single NV centers to investigate the spin dynamics of nanometer-thin flakes of α-RuCl3 at room temperature. We observe a significant reduction in the T1 in the presence of α-RuCl3 in the proximity of NVs, which we attribute to paramagnetic spin noise confined in the 2D hexagonal planes. Furthermore, the T1 time exhibits a monotonic increase with an applied magnetic field. We associate this trend with the alteration of the spin and charge noise in α-RuCl3 under an external magnetic field. These findings suggest that the influence of the spin dynamics of α-RuCl3 on the T1 of the NV center can be used to gain information about the material itself and the technique to be used on other 2D materials.

2.
Nat Commun ; 14(1): 3628, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336909

RESUMO

LaTe3 is a non-centrosymmetric material with time reversal symmetry, where the charge density wave is hosted by the Te bilayers. Here, we show that LaTe3 hosts a Kramers nodal line-a twofold degenerate nodal line connecting time reversal-invariant momenta. We use angle-resolved photoemission spectroscopy, density functional theory with an experimentally reported modulated structure, effective band structures calculated by band unfolding, and symmetry arguments to reveal the Kramers nodal line. Furthermore, calculations confirm that the nodal line imposes gapless crossings between the bilayer-split charge density wave-induced shadow bands and the main bands. In excellent agreement with the calculations, spectroscopic data confirm the presence of the Kramers nodal line and show that the crossings traverse the Fermi level. Furthermore, spinless nodal lines-completely gapped out by spin-orbit coupling-are formed by the linear crossings of the shadow and main bands with a high Fermi velocity.

3.
Rev Sci Instrum ; 94(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37195134

RESUMO

The scanning superconducting quantum interference device (SQUID) fabricated on the tip of a sharp quartz pipette (SQUID-on-tip) has emerged as a versatile tool for the nanoscale imaging of magnetic, thermal, and transport properties of microscopic devices of quantum materials. We present the design and performance of a scanning SQUID-on-tip microscope in a top-loading probe of a cryogen-free dilution refrigerator. The microscope is enclosed in a custom-made vacuum-tight cell mounted at the bottom of the probe and is suspended by springs to suppress vibrations caused by the pulse tube cryocooler. Two capillaries allow for the in situ control of helium exchange gas pressure in the cell that is required for thermal imaging. A nanoscale heater is used to create local temperature gradients in the sample, which enables quantitative characterization of relative vibrations between the tip and the sample. The spectrum of the vibrations shows distinct resonant peaks with a maximal power density of about 27 nm/Hz1/2 in the in-plane direction. The performance of the SQUID-on-tip microscope is demonstrated by magnetic imaging of the MnBi2Te4 magnetic topological insulator, magnetization and current distribution imaging in a SrRuO3 ferromagnetic oxide thin film, and thermal imaging of dissipation in graphene.

4.
J Phys Condens Matter ; 31(48): 485707, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31486414

RESUMO

ZrSiS was recently shown to be a new material with topologically non-trivial band structure that exhibits multiple Dirac nodes and a robust linear band dispersion up to an unusually high energy of 2 eV. Such a robust linear dispersion makes the topological properties of ZrSiS insensitive to perturbations like carrier doping or lattice distortion. Here, we show that a novel superconducting phase with a remarkably high [Formula: see text] of 7.5 K can be induced in single crystals of ZrSiS by a non-superconducting metallic tip of Ag. From first-principles calculations, we show that the observed superconducting phase might originate from a dramatic enhancement of density of states due to the presence of a metallic tip on ZrSiS. Our calculations also show that the emerging tip-induced superconducting phase co-exists with the well preserved topological properties of ZrSiS.

5.
Sci Rep ; 8(1): 10527, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30002469

RESUMO

TaSb2 has been predicted theoretically to be a weak topological insulator. Whereas, the earlier magnetotransport experiment has established it as a topological semimetal. In the previous works, the Shubnikov-de Haas oscillation has been analyzed to probe the Fermi surface, with magnetic field along a particular crystallographic axis only. By employing a sample rotator, we reveal highly anisotropic transverse magnetoresistance by rotating the magnetic field along different crystallographic directions. To probe the anisotropy in the Fermi surface, we have performed magnetization measurements and detected strong de Haas-van Alphen (dHvA) oscillations for the magnetic field applied along a and b axes as well as perpendicular to ab plane of the crystals. Three Fermi pockets have been identified by analyzing the dHvA oscillations. With the application of magnetic field along different crystal directions, the cross-sectional areas of the Fermi pockets have been found significantly different, i.e., the Fermi pockets are highly anisotropic in nature. Three-band fitting of electrical and Hall conductivity reveals two high mobility electron pockets and one low mobility hole pocket. The angular variation of transverse magnetoresistance has been qualitatively explained using the results of dHvA oscillations and three-band analysis.

6.
Sci Rep ; 7(1): 4883, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28687771

RESUMO

We report semiconductor to metal-like crossover in the temperature dependence of resistivity (ρ) due to the switching of charge transport from bulk to surface channel in three-dimensional topological insulator Bi1.5Sb0.5Te1.7Se1.3. Unlike earlier studies, a much sharper drop in ρ(T) is observed below the crossover temperature due to the dominant surface conduction. Remarkably, the resistivity of the conducting surface channel follows a rarely observable T 2 dependence at low temperature, as predicted theoretically for a two-dimensional Fermi liquid system. The field dependence of magnetization shows a cusp-like paramagnetic peak in the susceptibility (χ) at zero field over the diamagnetic background. The peak is found to be robust against temperature and χ decays linearly with the field from its zero-field value. This unique behavior of the χ is associated with the spin-momentum locked topological surface state in Bi1.5Sb0.5Te1.7Se1.3. The reconstruction of the surface state with time is clearly reflected through the reduction of the peak height with the age of the sample.

7.
Proc Natl Acad Sci U S A ; 114(10): 2468-2473, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223488

RESUMO

Whereas the discovery of Dirac- and Weyl-type excitations in electronic systems is a major breakthrough in recent condensed matter physics, finding appropriate materials for fundamental physics and technological applications is an experimental challenge. In all of the reported materials, linear dispersion survives only up to a few hundred millielectronvolts from the Dirac or Weyl nodes. On the other hand, real materials are subject to uncontrolled doping during preparation and thermal effect near room temperature can hinder the rich physics. In ZrSiS, angle-resolved photoemission spectroscopy measurements have shown an unusually robust linear dispersion (up to [Formula: see text]2 eV) with multiple nondegenerate Dirac nodes. In this context, we present the magnetotransport study on ZrSiS crystal, which represents a large family of materials (WHM with W = Zr, Hf; H = Si, Ge, Sn; M = O, S, Se, Te) with identical band topology. Along with extremely large and nonsaturating magnetoresistance (MR), [Formula: see text]1.4 [Formula: see text] 105% at 2 K and 9 T, it shows strong anisotropy, depending on the direction of the magnetic field. Quantum oscillation and Hall effect measurements have revealed large hole and small electron Fermi pockets. A nontrivial [Formula: see text] Berry phase confirms the Dirac fermionic nature for both types of charge carriers. The long-sought relativistic phenomenon of massless Dirac fermions, known as the Adler-Bell-Jackiw chiral anomaly, has also been observed.

8.
Sci Rep ; 7: 40327, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067306

RESUMO

Although, the long-standing debate on the resistivity anomaly in ZrTe5 somewhat comes to an end, the exact topological nature of the electronic band structure remains elusive till today. Theoretical calculations predicted that bulk ZrTe5 to be either a weak or a strong three-dimensional (3D) topological insulator. However, the angle resolved photoemission spectroscopy and transport measurements clearly demonstrate 3D Dirac cone state with a small mass gap between the valence band and conduction band in the bulk. From the magnetization and magneto-transport measurements on ZrTe5 single crystal, we have detected both the signature of helical spin texture from topological surface state and chiral anomaly associated with the 3D Dirac cone state in the bulk. This implies that ZrTe5 hosts a novel electronic phase of material, having massless Dirac fermionic excitation in its bulk gap state, unlike earlier reported 3D topological insulators. Apart from the band topology, it is also apparent from the resistivity and Hall measurements that the anomalous peak in the resistivity can be shifted to a much lower temperature (T < 2 K) by controlling impurity and defects.


Assuntos
Fenômenos Químicos , Zircônio/química , Cristalização , Elétrons , Campos Magnéticos , Tamanho da Partícula , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA