Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Curr Hematol Malig Rep ; 18(6): 264-272, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37751103

RESUMO

PURPOSE OF REVIEW: The current review focuses on the preclinical development and clinical advances of natural killer (NK) cell therapeutics for hematologic malignancies and offers perspective on the unmet challenges that will direct future discovery in the field. RECENT FINDINGS: Approaches to improve or re-direct NK cell anti-tumor functions against hematologic malignancies have included transgenic expression of chimeric antigen receptors (CARs), administration of NK cell engagers including BiKEs and TriKEs that enhance antibody-dependent cellular cytotoxicity (ADCC) by co-engaging NK cell CD16 and antigens on tumors, incorporation of a non-cleavable CD16 that results in enhanced ADCC, use of induced memory-like NK cells alone or in combination with CARs, and blockade of NK immune checkpoints to enhance NK cytotoxicity. Recently reported and ongoing clinical trials support the feasibility and safety of these approaches. NK cell-based therapeutic strategies hold great promise as cost-effective, off-the-shelf cell therapies for patients with relapsed and refractory hematologic diseases.


Assuntos
Neoplasias Hematológicas , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais , Neoplasias/terapia , Receptores de Antígenos Quiméricos/metabolismo , Neoplasias Hematológicas/metabolismo
2.
Blood ; 139(11): 1607-1608, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35298605
3.
J Immunother Cancer ; 9(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34815355

RESUMO

BACKGROUND: Successful targeting of solid tumors such as breast cancer (BC) using chimeric antigen receptor (CAR) T cells has proven challenging, largely attributed to the immunosuppressive tumor microenvironment (TME). Myeloid-derived suppressor cells (MDSCs) inhibit CAR T cell function and persistence within the breast TME. To overcome this challenge, we have developed CAR T cells targeting tumor-associated mucin 1 (MUC1) with a novel chimeric costimulatory receptor that targets tumor necrosis factor-related apoptosis-inducing ligand receptor 2 (TR2) expressed on MDSCs. METHODS: The function of the TR2.41BB costimulatory receptor was assessed by exposing non-transduced (NT) and TR2.41BB transduced T cells to recombinant TR2, after which nuclear translocation of NFκB was measured by ELISA and western blot. The cytolytic activity of CAR.MUC1/TR2.41BB T cells was measured in a 5-hour cytotoxicity assay using MUC1+ tumor cells as targets in the presence or absence of MDSCs. In vivo antitumor activity was assessed using MDSC-enriched tumor-bearing mice treated with CAR T cells with or without TR2.41BB. RESULTS: Nuclear translocation of NFκB in response to recombinant TR2 was detected only in TR2.41BB T cells. The presence of MDSCs diminished the cytotoxic potential of CAR.MUC1 T cells against MUC1+ BC cell lines by 25%. However, TR2.41BB expression on CAR.MUC1 T cells induced MDSC apoptosis, thereby restoring the cytotoxic activity of CAR.MUC1 T cells against MUC1+ BC lines. The presence of MDSCs resulted in an approximately twofold increase in tumor growth due to enhanced angiogenesis and fibroblast accumulation compared with mice with tumor alone. Treatment of these MDSC-enriched tumors with CAR.MUC1.TR2.41BB T cells led to superior tumor cell killing and significant reduction in tumor growth (24.54±8.55 mm3) compared with CAR.MUC1 (469.79±81.46 mm3) or TR2.41BB (434.86±64.25 mm3) T cells alone. CAR.MUC1.TR2.41BB T cells also demonstrated improved T cell proliferation and persistence at the tumor site, thereby preventing metastases. We observed similar results using CAR.HER2.TR2.41BB T cells in a HER2+ BC model. CONCLUSIONS: Our findings demonstrate that CAR T cells that coexpress the TR2.4-1BB receptor exhibit superior antitumor potential against breast tumors containing immunosuppressive and tumor promoting MDSCs, resulting in TME remodeling and improved T cell proliferation at the tumor site.


Assuntos
Neoplasias da Mama/genética , Células Supressoras Mieloides/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos
4.
Commun Biol ; 4(1): 368, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742099

RESUMO

High expression levels of human epidermal growth factor receptor 2 (HER2) have been associated with poor prognosis in patients with pancreatic adenocarcinoma (PDAC). However, HER2-targeting immunotherapies have been unsuccessful to date. Here we increase the breadth, potency, and duration of anti-PDAC HER2-specific CAR T-cell (HER2.CART) activity with an oncolytic adeno-immunotherapy that produces cytokine, immune checkpoint blockade, and a safety switch (CAdTrio). Combination treatment with CAdTrio and HER2.CARTs cured tumors in two PDAC xenograft models and produced durable tumor responses in humanized mice. Modifications to the tumor immune microenvironment contributed to the antitumor activity of our combination immunotherapy, as intratumoral CAdTrio treatment induced chemotaxis to enable HER2.CART migration to the tumor site. Using an advanced PDAC model in humanized mice, we found that local CAdTrio treatment of primary tumor stimulated systemic host immune responses that repolarized distant tumor microenvironments, improving HER2.CART anti-tumor activity. Overall, our data demonstrate that CAdTrio and HER2.CARTs provide complementary activities to eradicate metastatic PDAC and may represent a promising co-operative therapy for PDAC patients.


Assuntos
Adenoviridae/patogenicidade , Carcinoma Ductal Pancreático/terapia , Imunoterapia Adotiva , Terapia Viral Oncolítica , Vírus Oncolíticos/patogenicidade , Neoplasias Pancreáticas/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/transplante , Antígeno B7-H1/imunologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/virologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Feminino , Humanos , Interleucina-12/genética , Masculino , Metástase Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/virologia , Receptor ErbB-2/genética , Receptores de Antígenos Quiméricos/genética , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Linfócitos T/imunologia , Carga Tumoral , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancers (Basel) ; 12(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371456

RESUMO

Natural killer (NK) cells are innate immune effectors capable of broad cytotoxicity via germline-encoded receptors and can have conferred cytotoxic potential via the addition of chimeric antigen receptors. Combined with their reduced risk of graft-versus-host disease (GvHD) and cytokine release syndrome (CRS), NK cells are an attractive therapeutic platform. While significant progress has been made in treating hematological malignancies, challenges remain in using NK cell-based therapy to combat solid tumors due to their immunosuppressive tumor microenvironments (TMEs). The development of novel strategies enabling NK cells to resist the deleterious effects of the TME is critical to their therapeutic success against solid tumors. In this review, we discuss strategies that apply various genetic and non-genetic engineering approaches to enhance receptor-mediated NK cell cytotoxicity, improve NK cell resistance to TME effects, and enhance persistence in the TME. The successful design and application of these strategies will ultimately lead to more efficacious NK cell therapies to treat patients with solid tumors. This review outlines the mechanisms by which TME components suppress the anti-tumor activity of endogenous and adoptively transferred NK cells while also describing various approaches whose implementation in NK cells may lead to a more robust therapeutic platform against solid tumors.

6.
Sci Adv ; 6(28): eaba6156, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32832602

RESUMO

Immunotherapies, including cell-based therapies, targeting the tumor microenvironment (TME) result in variable and delayed responses. Thus, it has been difficult to gauge the efficacy of TME-directed therapies early after administration. We investigated a nano-radiomics approach (quantitative analysis of nanoparticle contrast-enhanced three-dimensional images) for detection of tumor response to cellular immunotherapy directed against myeloid-derived suppressor cells (MDSCs), a key component of TME. Animals bearing human MDSC-containing solid tumor xenografts received treatment with MDSC-targeting human natural killer (NK) cells and underwent nanoparticle contrast-enhanced computed tomography (CT) imaging. Whereas conventional CT-derived tumor metrics were unable to differentiate NK cell immunotherapy tumors from untreated tumors, nano-radiomics revealed texture-based features capable of differentiating treatment groups. Our study shows that TME-directed cellular immunotherapy causes subtle changes not effectively gauged by conventional imaging metrics but revealed by nano-radiomics. Our work provides a method for noninvasive assessment of TME-directed immunotherapy potentially applicable to numerous solid tumors.


Assuntos
Células Supressoras Mieloides , Neoplasias , Animais , Humanos , Imunoterapia/métodos , Células Matadoras Naturais , Células Supressoras Mieloides/patologia , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Neoplasias/terapia , Microambiente Tumoral/fisiologia
7.
Adv Exp Med Biol ; 1224: 117-140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32036608

RESUMO

Myeloid-derived suppressor cells (MDSCs) represent a heterogenous population of immature myeloid cells capable of modulating immune responses. In the context of cancer, MDSCs are abnormally produced and recruited to the tumor microenvironment (TME) to aid in the establishment of an immunosuppressive TME that facilitates tumor escape. Additionally, MDSCs contribute to non-immunologic aspects of tumor biology, including tumor angiogenesis and metastasis. The clinical significance of MDSCs has recently been appreciated as numerous studies have suggested a correlation between circulating and intratumoral MDSC frequencies and tumor stage, progression, and treatment resistance. In this chapter, we review MDSC characterization, development, expansion, and mechanisms that facilitate immunosuppression and tumor progression. Furthermore, we highlight studies demonstrating the clinical significance of MDSCs in various disease states in addition to strategies that modulate various aspects of MDSC biology for therapeutic gain.


Assuntos
Células Supressoras Mieloides/patologia , Neoplasias/patologia , Microambiente Tumoral , Humanos , Células Mieloides , Evasão Tumoral
8.
Cancer Immunol Res ; 7(3): 363-375, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30651290

RESUMO

Solid tumors are refractory to cellular immunotherapies in part because they contain suppressive immune effectors such as myeloid-derived suppressor cells (MDSCs) that inhibit cytotoxic lymphocytes. Strategies to reverse the suppressive tumor microenvironment (TME) should also attract and activate immune effectors with antitumor activity. To address this need, we developed gene-modified natural killer (NK) cells bearing a chimeric receptor in which the activating receptor NKG2D is fused to the cytotoxic ζ-chain of the T-cell receptor (NKG2D.ζ). NKG2D.ζ-NK cells target MDSCs, which overexpress NKG2D ligands within the TME. We examined the ability of NKG2D.ζ-NK cells to eliminate MDSCs in a xenograft TME model and improve the antitumor function of tumor-directed chimeric antigen receptor (CAR)-modified T cells. We show that NKG2D.ζ-NK cells are cytotoxic against MDSCs, but spare NKG2D ligand-expressing normal tissues. NKG2D.ζ-NK cells, but not unmodified NK cells, secrete proinflammatory cytokines and chemokines in response to MDSCs at the tumor site and improve infiltration and antitumor activity of subsequently infused CAR-T cells, even in tumors for which an immunosuppressive TME is an impediment to treatment. Unlike endogenous NKG2D, NKG2D.ζ is not susceptible to TME-mediated downmodulation and thus maintains its function even within suppressive microenvironments. As clinical confirmation, NKG2D.ζ-NK cells generated from patients with neuroblastoma killed autologous intratumoral MDSCs capable of suppressing CAR-T function. A combination therapy for solid tumors that includes both NKG2D.ζ-NK cells and CAR-T cells may improve responses over therapies based on CAR-T cells alone.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Supressoras Mieloides/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Citotoxicidade Imunológica , Feminino , Humanos , Imunoterapia Adotiva , Células K562 , Ligantes , Camundongos , Células Supressoras Mieloides/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neuroblastoma/imunologia , Neuroblastoma/patologia , Neuroblastoma/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Oncoimmunology ; 7(10): e1490853, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30288358

RESUMO

Cancer-induced myeloid-derived suppressor cells (MDSC) play an important role in tumor immune evasion. MDSC programming or polarization has been proposed as a strategy for leveraging the developmental plasticity of myeloid cells to reverse MDSC immune suppressive functions, or cause them to acquire anti-tumor activity. While MDSC derived ex vivo from murine bone marrow precursor cells with tumor-conditioned medium efficiently suppressed T cell proliferation, MDSC derived from conditioned medium in presence of TGF-ß1 (TGFß-MDSC) acquired a novel immune-stimulatory phenotype, losing the ability to inhibit T cell proliferation and acquiring enhanced antigen-presenting capability. Altered immune function was associated with SMAD-2 dependent upregulation of maturation and costimulatory molecules, and downregulation of inducible nitric oxide synthase (iNOS), an effector mechanism of immunosuppression. TGFß-MDSC also upregulated FAS-ligand expression, leading to FAS-dependent killing of murine human papillomavirus (HPV)-associated head and neck cancer cells and tumor spheroids in vitro and anti-tumor activity in vivo. Radiation upregulated FAS expression on tumor cells, and the combination of radiotherapy and intratumoral injection of TGFß-MDSC strongly enhanced class I expression on tumor cells and induction of HPV E7 tetramer-positive CD8 + T cells, leading to clearance of established tumors and long-term survival. TGFß-MDSC derived from human PBMC with tumor conditioned medium also lost immunosuppressive function and acquired tumor-killing activity. Thus, TGFß1 mediated programming of nascent MDSC leads to a potent anti-tumor phenotype potentially suitable for adoptive immunotherapy.

10.
Front Med (Lausanne) ; 5: 343, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619856

RESUMO

The efficacy of T cells expressing chimeric antigen receptors (CARs) for solid tumors has been limited by insufficient CAR T cell expansion and persistence. The use of virus-specific T cells (VSTs) as carriers for CARs may overcome this limitation since CAR-VSTs can be boosted by viral vaccines or oncolytic viruses. However, there is limited understanding of the optimal combination of endodomains and their influence on the native T cell receptor (TCR) in VSTs. We therefore compared the function of GD2.CARs expressing the TCR zeta chain (ζ) alone or combined with endodomains from CD28 and 4-1BB in varicella zoster virus-specific (VZV) T cells. VZVSTs expressing GD2-CARs recognized VZV-derived peptides and killed GD2-expressing tumor cells. However, after repeated stimulation through their native TCR, the expansion of GD2-CAR.CD28ζ-VZVSTs was 3.3-fold greater (p < 0.001) than non-transduced VZVSTs, whereas GD2-CARζ- and GD2-CAR.41BBζ inhibited VZVST expansion (p < 0.01). Compared to control VZVSTs, GD2-CAR.ζ VZVSTs showed a greater frequency of apoptotic (p < 0.01) T cells, whereas prolonged downregulation of the native αß TCR was observed in GD2-CAR.41BBζ VZVSTs (p < 0.001). We confirmed that CD28ζ can best maintain TCR function by expressing GD2.CARs in Epstein-Barr virus-specific T cells and CD19-CARs in VZVSTs. In response to CAR stimulation VSTs with CD28ζ endodomains also showed the greatest expansion (6 fold > GD2-CAR.41BBζ VZVSTs (p < 0.001), however anti-tumor efficacy was superior in GD2-CAR.41BBζ-VZVSTs. These findings demonstrate that CAR signaling domains can enhance or diminish the function of the native TCR and indicate that only CD28ζ may preserve the function of the native TCR in tonically signaling CAR-VSTs.

11.
Cancer Discov ; 7(11): 1238-1247, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28830878

RESUMO

Successful adoptive T-cell immunotherapy of solid tumors will require improved expansion and cytotoxicity of tumor-directed T cells within tumors. Providing recombinant or transgenic cytokines may produce the desired benefits but is associated with significant toxicities, constraining clinical use. To circumvent this limitation, we constructed a constitutively signaling cytokine receptor, C7R, which potently triggers the IL7 signaling axis but is unresponsive to extracellular cytokine. This strategy augments modified T-cell function following antigen exposure, but avoids stimulating bystander lymphocytes. Coexpressing the C7R with a tumor-directed chimeric antigen receptor (CAR) increased T-cell proliferation, survival, and antitumor activity during repeated exposure to tumor cells, without T-cell dysfunction or autonomous T-cell growth. Furthermore, C7R-coexpressing CAR T cells were active against metastatic neuroblastoma and orthotopic glioblastoma xenograft models even at cell doses that had been ineffective without C7R support. C7R may thus be able to enhance antigen-specific T-cell therapies against cancer.Significance: The constitutively signaling C7R system developed here delivers potent IL7 stimulation to CAR T cells, increasing their persistence and antitumor activity against multiple preclinical tumor models, supporting its clinical development. Cancer Discov; 7(11); 1238-47. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1201.


Assuntos
Glioblastoma/terapia , Imunoterapia Adotiva , Interleucina-7/imunologia , Neuroblastoma/terapia , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Glioblastoma/genética , Glioblastoma/imunologia , Humanos , Interleucina-7/genética , Camundongos , Neuroblastoma/genética , Neuroblastoma/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Receptores de Citocinas/genética , Receptores de Citocinas/imunologia , Receptores de Citocinas/uso terapêutico , Transdução de Sinais/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Immunol Res ; 5(9): 778-789, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28724544

RESUMO

Natural killer (NK) cells are large granular lymphocytes that promote the antitumor response via communication with other cell types in the tumor microenvironment. Previously, we have shown that NK cells secrete a profile of immune stimulatory factors (e.g., IFNγ, MIP-1α, and TNFα) in response to dual stimulation with the combination of antibody (Ab)-coated tumor cells and cytokines, such as IL12. We now demonstrate that this response is enhanced in the presence of autologous monocytes. Monocyte enhancement of NK cell activity was dependent on cell-to-cell contact as determined by a Transwell assay. It was hypothesized that NK cell effector functions against Ab-coated tumor cells were enhanced via binding of MICA on monocytes to NK cell NKG2D receptors. Strategies to block MICA-NKG2D interactions resulted in reductions in IFNγ production. Depletion of monocytes in vivo resulted in decreased IFNγ production by murine NK cells upon exposure to Ab-coated tumor cells. In mice receiving trastuzumab and IL12 therapy, monocyte depletion resulted in significantly greater tumor growth in comparison to mock-depleted controls (P < 0.05). These data suggest that NK cell-monocyte interactions enhance NK cell antitumor activity in the setting of monoclonal Ab therapy for cancer. Cancer Immunol Res; 5(9); 778-89. ©2017 AACR.


Assuntos
Neoplasias da Mama/terapia , Antígenos de Histocompatibilidade Classe I/imunologia , Interferon gama/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Antígenos de Histocompatibilidade Classe I/efeitos dos fármacos , Humanos , Interleucina-12/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Camundongos , Monócitos/imunologia , Monócitos/patologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/antagonistas & inibidores , Receptores Fc/administração & dosagem , Receptores Fc/imunologia , Trastuzumab/administração & dosagem , Trastuzumab/imunologia
14.
Methods Mol Biol ; 1441: 195-202, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27177667

RESUMO

Recent advances in methods for the ex vivo expansion of human natural killer (NK) cells have facilitated the use of these powerful immune cells in clinical protocols. Further, the ability to genetically modify primary human NK cells following rapid expansion allows targeting and enhancement of their immune function. We have successfully adapted an expansion method for primary NK cells from peripheral blood mononuclear cells or from apheresis products in gas permeable rapid expansion devices (G-Rexes). Here, we describe an optimized protocol for rapid and robust NK cell expansion as well as a method for highly efficient retroviral transduction of these ex vivo expanded cells. These methodologies are good manufacturing practice (GMP) compliant and could be used for clinical-grade product manufacturing.


Assuntos
Técnicas de Cultura de Células/métodos , Células Matadoras Naturais/citologia , Transdução Genética , Remoção de Componentes Sanguíneos , Proliferação de Células , Transplante de Células , Células Alimentadoras/citologia , Células Alimentadoras/imunologia , Células Alimentadoras/metabolismo , Humanos , Células K562 , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária
15.
BMC Med Genomics ; 8: 66, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26470881

RESUMO

BACKGROUND: Traditionally, the CD56(dim)CD16(+) subset of Natural Killer (NK) cells has been thought to mediate cellular cytotoxicity with modest cytokine secretion capacity. However, studies have suggested that this subset may exert a more diverse array of immunological functions. There exists a lack of well-developed functional models to describe the behavior of activated NK cells, and the interactions between signaling pathways that facilitate effector functions are not well understood. In the present study, a combination of genome-wide microarray analyses and systems-level bioinformatics approaches were utilized to elucidate the transcriptional landscape of NK cells activated via interactions with antibody-coated targets in the presence of interleukin-12 (IL-12). METHODS: We conducted differential gene expression analysis of CD56(dim)CD16(+) NK cells following FcR stimulation in the presence or absence of IL-12. Next, we functionally characterized gene sets according to patterns of gene expression and validated representative genes using RT-PCR. IPA was utilized for biological pathway analysis, and an enriched network of interacting genes was generated using GeneMANIA. Furthermore, PAJEK and the HITS algorithm were employed to identify important genes in the network according to betweeness centrality, hub, and authority node metrics. RESULTS: Analyses revealed that CD56(dim)CD16(+) NK cells co-stimulated via the Fc receptor (FcR) and IL-12R led to the expression of a unique set of genes, including genes encoding cytotoxicity receptors, apoptotic proteins, intracellular signaling molecules, and cytokines that may mediate enhanced cytotoxicity and interactions with other immune cells within inflammatory tissues. Network analyses identified a novel set of connected key players, BATF, IRF4, TBX21, and IFNG, within an integrated network composed of differentially expressed genes in NK cells stimulated by various conditions (immobilized IgG, IL-12, or the combination of IgG and IL-12). CONCLUSIONS: These results are the first to address the global mechanisms by which NK cells mediate their biological functions when encountering antibody-coated targets within inflammatory sites. Moreover, this study has identified a set of high-priority targets for subsequent investigation into strategies to combat cancer by enhancing the anti-tumor activity of CD56(dim)CD16(+) NK cells.


Assuntos
Interleucina-12/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Receptores Fc/metabolismo , Transcriptoma/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Genômica , Humanos , Imunoglobulina G/imunologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Análise de Sequência com Séries de Oligonucleotídeos
16.
J Immunol ; 186(6): 3401-9, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21321106

RESUMO

The antitumor effects of therapeutic mAbs may depend on immune effector cells that express FcRs for IgG. IL-12 is a cytokine that stimulates IFN-γ production from NK cells and T cells. We hypothesized that coadministration of IL-12 with a murine anti-HER2/neu mAb (4D5) would enhance the FcR-dependent immune mechanisms that contribute to its antitumor activity. Thrice-weekly therapy with IL-12 (1 µg) and 4D5 (1 mg/kg) significantly suppressed the growth of a murine colon adenocarcinoma that was engineered to express human HER2 (CT-26(HER2/neu)) in BALB/c mice compared with the result of therapy with IL-12, 4D5, or PBS alone. Combination therapy was associated with increased circulating levels of IFN-γ, monokine induced by IFN-γ, and RANTES. Experiments with IFN-γ-deficient mice demonstrated that this cytokine was necessary for the observed antitumor effects of therapy with IL-12 plus 4D5. Immune cell depletion experiments showed that NK cells (but not CD4(+) or CD8(+) T cells) mediated the antitumor effects of this treatment combination. Therapy of HER2/neu-positive tumors with trastuzumab plus IL-12 induced tumor necrosis but did not affect tumor proliferation, apoptosis, vascularity, or lymphocyte infiltration. In vitro experiments with CT-26(HER2/neu) tumor cells revealed that IFN-γ induced an intracellular signal but did not inhibit cellular proliferation or induce apoptosis. Taken together, these data suggest that tumor regression in response to trastuzumab plus IL-12 is mediated through NK cell IFN-γ production and provide a rationale for the coadministration of NK cell-activating cytokines with therapeutic mAbs.


Assuntos
Adenocarcinoma/terapia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias do Colo/terapia , Interferon gama/biossíntese , Interleucina-12/uso terapêutico , Células Matadoras Naturais/imunologia , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Animais , Anticorpos Monoclonais Humanizados , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Testes Imunológicos de Citotoxicidade , Feminino , Interferon gama/fisiologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Aleatória , Receptor ErbB-2/imunologia , Trastuzumab , Regulação para Cima/imunologia
17.
Blood ; 111(8): 4173-83, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18174382

RESUMO

Natural killer (NK) cells express an activating receptor for the Fc portion of IgG (FcgammaRIIIa) that mediates interferon (IFN)-gamma production in response to antibody (Ab)-coated targets. We have previously demonstrated that NK cells activated with interleukin-12 (IL-12) in the presence of immobilized IgG secrete 10-fold or more higher levels of IFN-gamma as compared with stimulation with either agent alone. We examined the intracellular signaling pathways responsible for this synergistic IFN-gamma production. NK cells costimulated via the FcR and the IL-12 receptor (IL-12R) exhibited enhanced levels of activated STAT4 and Syk as compared with NK cells stimulated through either receptor alone. Extracellular signal-regulated kinase (ERK) was also synergistically activated under these conditions. Studies with specific chemical inhibitors revealed that the activation of ERK was dependent on the activation of PI3-K, whose activation was dependent on Syk, and that sequential activation of these molecules was required for NK cell IFN-gamma production in response to FcR and IL-12 stimulation. Retroviral transfection of ERK1 into primary human NK cells substantially increased IFN-gamma production in response to immobilized IgG and IL-12, while transfection of human NK cells with a dominant-negative ERK1 abrogated IFN-gamma production. Confocal microscopy and cellular fractionation experiments revealed that FcgammaRIIIa and the IL-12R colocalized to areas of lipid raft microdomains in response to costimulation with IgG and IL-12. Chemical disruption of lipid rafts inhibited ERK signaling in response to costimulation and significantly inhibited IFN-gamma production. These data suggest that dual recruitment of FcgammaRIIIa and the IL-12R to lipid raft microdomains allows for enhanced activation of downstream signaling events that lead to IFN-gamma production.


Assuntos
Interferon gama/biossíntese , Células Matadoras Naturais/enzimologia , Células Matadoras Naturais/imunologia , Microdomínios da Membrana/enzimologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptores de IgG/imunologia , Receptores de Interleucina-12/imunologia , Colesterol/deficiência , Ativação Enzimática/efeitos dos fármacos , Humanos , Imunoglobulina G/farmacologia , Interleucina-12/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT4/metabolismo , Quinase Syk , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
J Immunol ; 177(1): 120-9, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16785506

RESUMO

NK cells express an activating FcR (FcgammaRIIIa) that mediates Ab-dependent cellular cytotoxicity and the production of immune modulatory cytokines in response to Ab-coated targets. IL-21 has antitumor activity in murine models that depends in part on its ability to promote NK cell cytotoxicity and IFN-gamma secretion. We hypothesized that the NK cell response to FcR stimulation would be enhanced by the administration of IL-21. Human NK cells cultured with IL-21 and immobilized IgG or human breast cancer cells coated with a therapeutic mAb (trastuzumab) secreted large amounts of IFN-gamma. Increased secretion of TNF-alpha and the chemokines IL-8, MIP-1alpha, and RANTES was also observed under these conditions. NK cell IFN-gamma production was dependent on distinct signals mediated by the IL-21R and the FcR and was abrogated in STAT1-deficient NK cells. Supernatants derived from NK cells that had been stimulated with IL-21 and mAb-coated breast cancer cells were able to drive the migration of naive and activated T cells in an in vitro chemotaxis assay. IL-21 also enhanced NK cell lytic activity against Ab-coated tumor cells. Coadministration of IL-21 and Ab-coated tumor cells to immunocompetent mice led to synergistic production of IFN-gamma by NK cells. Furthermore, the administration of IL-21 augmented the effects of an anti-HER2/neu mAb in a murine tumor model, an effect that required IFN-gamma. These findings demonstrate that IL-21 significantly enhances the NK cell response to Ab-coated targets and suggest that IL-21 would be an effective adjuvant to administer in combination with therapeutic mAbs.


Assuntos
Adjuvantes Imunológicos/fisiologia , Anticorpos Monoclonais/metabolismo , Testes Imunológicos de Citotoxicidade , Interleucinas/fisiologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quimiocinas/biossíntese , Quimiocinas/fisiologia , Quimiotaxia de Leucócito/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Interferon gama/biossíntese , Interferon gama/sangue , Interleucinas/administração & dosagem , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Receptor ErbB-2/imunologia , Subpopulações de Linfócitos T/imunologia , Trastuzumab , Fator de Necrose Tumoral alfa/biossíntese
19.
Cancer Res ; 66(1): 517-26, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16397268

RESUMO

In the current report, we have examined the ability of natural killer (NK) cells to produce T cell-recruiting chemokines following dual stimulation with interleukin (IL)-2 or IL-12 and human breast cancer cells coated with an antitumor antibody (trastuzumab). NK cells stimulated in this manner secreted an array of T cell-recruiting chemotactic factors, including IL-8, macrophage-derived chemokine, macrophage inflammatory protein 1alpha (MIP-1alpha), monocyte chemoattractant protein 1, and regulated on activation, normal T-cell expressed and secreted (RANTES), whereas stimulation of NK cells with either agent alone had minimal effect. Furthermore, these factors were functional for T-cell chemotaxis as culture supernatants derived from costimulated NK cells induced migration of both naïve and activated T cells in an in vitro chemotaxis assay. T-cell migration was significantly reduced when neutralizing antibodies to IL-8, MIP-1alpha, or RANTES were added to culture supernatants before their use in the chemotaxis assay. In addition, coadministration of trastuzumab-coated tumor cells and IL-12 to mice led to enhanced serum MIP-1alpha. As a clinical correlate, we examined the chemokine content of serum samples from breast cancer patients enrolled on a phase I trial of trastuzumab and IL-12, and found elevated levels of IL-8, RANTES, IFN-gamma inducible protein 10, monokine induced by IFN-gamma, and MIP-1alpha, specifically in those patients that experienced a clinical benefit. Sera from these patients exhibited the ability to direct T-cell migration in a chemotaxis assay, and neutralization of chemokines abrogated this effect. These data are the first to show chemokine production by NK cells, specifically in response to stimulation with antibody-coated tumor cells, and suggest a potential role for NK cell-derived chemokines in patients receiving therapeutic monoclonal antibodies.


Assuntos
Adenocarcinoma/imunologia , Anticorpos Antineoplásicos/imunologia , Neoplasias da Mama/imunologia , Quimiocinas/imunologia , Células Matadoras Naturais/imunologia , Receptores Fc/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/patologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Movimento Celular/imunologia , Quimiocinas/biossíntese , Quimiocinas/metabolismo , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/imunologia , Ensaios Clínicos Fase I como Assunto , Feminino , Humanos , Interleucina-12/administração & dosagem , Interleucina-12/imunologia , Interleucina-12/farmacologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/imunologia , Neoplasias/terapia , Trastuzumab
20.
J Clin Oncol ; 23(34): 8835-44, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16314644

RESUMO

PURPOSE: To evaluate the safety of sequentially administered recombinant (r) human (h) interleukin-12 (IL-12) and interferon alfa-2b (IFN-alpha-2b) in patients with advanced cancer and to determine the effects of endogenously produced IFN-gamma on Janus kinase-signal transducer and activator of transcription (Jak-STAT) signal transduction in patient peripheral-blood mononuclear cells (PBMCs). PATIENTS AND METHODS: Forty-nine patients with metastatic cancer received rhIL-12 on day 1 and IFN-alpha-2b on days 2 to 6 of either a 14-day (n = 43) or a 7-day treatment cycle (n = 6). rhIL-12 was initially administered subcutaneously at a dose of 100 ng/kg, whereas IFN-alpha-2b was escalated from 1 to 10 million units (MU) in cohorts of three patients (1, 3, 5, 7, or 10 MU). rhIL-12 was subsequently administered intravenously (IV) in escalating doses (100 to 500 ng/kg) to achieve greater IFN-gamma production. Peripheral blood was drawn for measurement of plasma IFN-gamma and the induction of Jak-STAT signal transduction in PBMCs. RESULTS: No IL-12-or IFN-alpha-related dose-limiting toxicities were observed. There were no responses in 41 assessable patients. Five patients exhibited stable disease lasting 6 months or longer while on therapy. Optimal induction of IFN-gamma by IL-12 occurred after an IV dose of 250 ng/kg. Patient PBMCs exhibited increased levels of STAT1 after IL-12 administration. The peak level of IFN-gamma achieved with IL-12 therapy correlated with the peak level of intracellular STAT1 in patient PBMCs (r = 0.38, P = .021). CONCLUSION: The combination of rhIL-12 and IFN-alpha-2b can be administered sequentially with minimal toxicity. IV administration of rhIL-12 modulates IFN-alpha-induced Jak-STAT signal transduction in patient PBMCs.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Relação Dose-Resposta a Droga , Humanos , Interferon alfa-2 , Interferon-alfa/administração & dosagem , Interferon-alfa/efeitos adversos , Interferon gama/sangue , Interleucina-12/administração & dosagem , Interleucina-12/efeitos adversos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Pessoa de Meia-Idade , Neoplasias/sangue , Neoplasias/fisiopatologia , Proteínas Recombinantes , Fator de Transcrição STAT1/sangue , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA