Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 234(2): 719-734, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35090191

RESUMO

The relevance of flowering time variation and plasticity to climate adaptation requires a comprehensive empirical assessment. We investigated natural selection and the genetic architecture of flowering time in Arabidopsis through field experiments in Europe across multiple sites and seasons. We estimated selection for flowering time, plasticity and canalization. Loci associated with flowering time, plasticity and canalization by genome-wide association studies were tested for a geographic signature of climate adaptation. Selection favored early flowering and increased canalization, except at the northernmost site, but was rarely detected for plasticity. Genome-wide association studies revealed significant associations with flowering traits and supported a substantial polygenic inheritance. Alleles associated with late flowering, including functional FRIGIDA variants, were more common in regions experiencing high annual temperature variation. Flowering time plasticity to fall vs spring and summer environments was associated with GIGANTEA SUPPRESSOR 5, which promotes early flowering under decreasing day length and temperature. The finding that late flowering genotypes and alleles are associated with climate is evidence for past adaptation. Real-time phenotypic selection analysis, however, reveals pervasive contemporary selection for rapid flowering in agricultural settings across most of the species range. The response to this selection may involve genetic shifts in environmental cuing compared to the ancestral state.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Variação Genética , Estudo de Associação Genômica Ampla , Fenótipo , Estações do Ano
2.
Mol Ecol Resour ; 22(1): 137-152, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34192415

RESUMO

Mapping the genes underlying ecologically relevant traits in natural populations is fundamental to develop a molecular understanding of species adaptation. Current sequencing technologies enable the characterization of a species' genetic diversity across the landscape or even over its whole range. The relevant capture of the genetic diversity across the landscape is critical for a successful genetic mapping of traits and there are no clear guidelines on how to achieve an optimal sampling and which sequencing strategy to implement. Here we determine, through simulation, the sampling scheme that maximizes the power to map the genetic basis of a complex trait in an outbreeding species across an idealized landscape and draw genomic predictions for the trait, comparing individual and pool sequencing strategies. Our results show that quantitative trait locus detection power and prediction accuracy are higher when more populations over the landscape are sampled and this is more cost-effectively done with pool sequencing than with individual sequencing. Additionally, we recommend sampling populations from areas of high genetic diversity. As progress in sequencing enables the integration of trait-based functional ecology into landscape genomics studies, these findings will guide study designs allowing direct measures of genetic effects in natural populations across the environment.


Assuntos
Ecologia , Genômica , Projetos de Pesquisa
3.
Plant Phenomics ; 2019: 7937156, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33313537

RESUMO

Herbicide resistance in agricultural weeds is a global problem with an increasing understanding that it is caused by multiple genes leading to quantitative resistance. These quantitative patterns of resistance are not easy to decipher with mortality assays alone, and there is a need for straightforward and unbiased protocols to accurately assess quantitative herbicide resistance. instaGraminoid-a computer vision and statistical analysis package-was developed as an automated and scalable method for quantifying herbicide resistance. The package was tested in rigid ryegrass (Lolium rigidum), the most noxious and highly resistant weed in Australia and the Mediterranean region. This method provides quantitative measures of the degree of chlorosis and necrosis of individual plants which was shown to accurately reflect herbicide resistance. We were able to reliably characterise resistance to four herbicides with different sites of action (glyphosate, sulfometuron, terbuthylazine, and trifluralin) in two L. rigidum populations from Southeast Australia. Cross-validation of the method across populations and herbicide treatments showed high repeatability and transferability. Significant positive correlations in resistance of individual plants were observed across herbicides, which suggest either the accumulation of herbicide-specific resistance alleles in single genotypes (multiple stacked resistance) or the presence of general broad-effects resistance alleles (cross-resistance). We used these quantitative estimates of cross-resistance to simulate how resistance development under an herbicide rotation strategy is likely to be higher than expected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA