Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 1115, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271143

RESUMO

Zika virus (ZIKV) infection can cause important developmental and neurological defects in Humans. Type I/III interferon responses control ZIKV infection and pathological processes, yet the virus has evolved various mechanisms to defeat these host responses. Here, we established a pipeline to delineate at high-resolution the genetic evolution of ZIKV in a controlled host cell environment. We uncovered that serially passaged ZIKV acquired increased infectivity and simultaneously developed a resistance to TLR3-induced restriction. We built a mathematical model that suggests that the increased infectivity is due to a reduced time-lag between infection and viral replication. We found that this adaptation is cell-type specific, suggesting that different cell environments may drive viral evolution along different routes. Deep-sequencing of ZIKV populations pinpointed mutations whose increased frequencies temporally coincide with the acquisition of the adapted phenotype. We functionally validated S455L, a substitution in ZIKV envelope (E) protein, recapitulating the adapted phenotype. Its positioning on the E structure suggests a putative function in protein refolding/stability. Taken together, our results uncovered ZIKV adaptations to the cellular environment leading to accelerated replication onset coupled with resistance to TLR3-induced antiviral response. Our work provides insights into Zika virus adaptation to host cells and immune escape mechanisms.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/genética , Receptor 3 Toll-Like , Interferons , Antivirais
2.
iScience ; 25(10): 105102, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36185360

RESUMO

After demyelinating insult, the neuronal progenitors of the adult mouse sub-ventricular zone (SVZ) called neuroblasts convert into oligodendrocytes that participate to the remyelination process. We use this rare example of spontaneous fate conversion to identify the molecular mechanisms governing these processes. Using in vivo cell lineage and single cell RNA-sequencing, we demonstrate that SVZ neuroblasts fate conversion proceeds through formation of a non-proliferating transient cellular state co-expressing markers of both neuronal and oligodendrocyte identities. Transition between the two identities starts immediately after demyelination and occurs gradually, by a stepwise upregulation/downregulation of key TFs and chromatin modifiers. Each step of this fate conversion involves fine adjustments of the transcription and translation machineries as well as tight regulation of metabolism and migratory behaviors. Together, these data constitute the first in-depth analysis of a spontaneous cell fate conversion in the adult mammalian CNS.

3.
Sci Adv ; 8(34): eabn9823, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36001670

RESUMO

Animals can regenerate complex organs, yet this process frequently results in imprecise replicas of the original structure. In the crustacean Parhyale, embryonic and regenerating legs differ in gene expression dynamics but produce apparently similar mature structures. We examine the fidelity of Parhyale leg regeneration using complementary approaches to investigate microanatomy, sensory function, cellular composition, and cell molecular profiles. We find that regeneration precisely replicates the complex microanatomy and spatial distribution of external sensory organs and restores their sensory function. Single-nuclei sequencing shows that regenerated and uninjured legs are indistinguishable in terms of cell-type composition and transcriptional profiles. This remarkable fidelity highlights the ability of organisms to achieve identical outcomes via distinct processes.

4.
Proc Natl Acad Sci U S A ; 119(27): e2119297119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35776546

RESUMO

Regenerating animals have the ability to reproduce body parts that were originally made in the embryo and subsequently lost due to injury. Understanding whether regeneration mirrors development is an open question in most regenerative species. Here, we take a transcriptomics approach to examine whether leg regeneration shows similar temporal patterns of gene expression as leg development in the embryo, in the crustacean Parhyale hawaiensis. We find that leg development in the embryo shows stereotypic temporal patterns of gene expression. In contrast, the dynamics of gene expression during leg regeneration show a higher degree of variation related to the physiology of individual animals. A major driver of this variation is the molting cycle. We dissect the transcriptional signals of individual physiology and regeneration to obtain clearer temporal signals marking distinct phases of leg regeneration. Comparing the transcriptional dynamics of development and regeneration we find that, although the two processes use similar sets of genes, the temporal patterns in which these genes are deployed are different and cannot be systematically aligned.


Assuntos
Anfípodes , Extremidades , Regeneração , Anfípodes/embriologia , Anfípodes/genética , Animais , Embrião não Mamífero , Extremidades/embriologia , Expressão Gênica , Regeneração/genética
5.
Curr Top Dev Biol ; 147: 199-230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35337450

RESUMO

Arthropods are the most abundant and diverse animals on earth. Among them, pancrustaceans are an ancient and morphologically diverse group, comprising a wide range of aquatic and semi-aquatic crustaceans as well as the insects, which emerged from crustacean ancestors to colonize most terrestrial habitats. Within insects, Drosophila stands out as one of the most powerful animal models, making major contributions to our understanding of development, physiology and behavior. Given these attributes, crustaceans provide a fertile ground for exploring biological diversity through comparative studies. However, beyond insects, few crustaceans are developed sufficiently as experimental models to enable such studies. The marine amphipod Parhyale hawaiensis is currently the best established crustacean system, offering year-round accessibility to developmental stages, transgenic tools, genomic resources, and established genetics and imaging approaches. The Parhyale research community is small but diverse, investigating the evolution of development, regeneration, aspects of sensory biology, chronobiology, bioprocessing and ecotoxicology.


Assuntos
Anfípodes , Artrópodes , Anfípodes/genética , Animais , Artrópodes/genética , Genoma , Modelos Animais
6.
Sci Rep ; 10(1): 11227, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641717

RESUMO

Over the past decade, the spotted wing Drosophila, Drosophila suzukii, has invaded Europe and America and has become a major agricultural pest in these areas, thereby prompting intense research activities to better understand its biology. Two draft genome assemblies already exist for this species but contain pervasive assembly errors and are highly fragmented, which limits their values. Our purpose here was to improve the assembly of the D. suzukii genome and to annotate it in a way that facilitates comparisons with D. melanogaster. For this, we generated PacBio long-read sequencing data and assembled a novel, high-quality D. suzukii genome assembly. It is one of the largest Drosophila genomes, notably because of the expansion of its repeatome. We found that despite 16 rounds of full-sib crossings the D. suzukii strain that we sequenced has maintained high levels of polymorphism in some regions of its genome. As a consequence, the quality of the assembly of these regions was reduced. We explored possible origins of this high residual diversity, including the presence of structural variants and a possible heterogeneous admixture pattern of North American and Asian ancestry. Overall, our assembly and annotation constitute a high-quality genomic resource that can be used for both high-throughput sequencing approaches, as well as manipulative genetic technologies to study D. suzukii.


Assuntos
Cromossomos de Insetos/genética , Mapeamento de Sequências Contíguas , Drosophila/genética , Frutas/parasitologia , Genoma de Inseto/genética , Animais , Feminino , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Polimorfismo Genético , Sequenciamento Completo do Genoma
7.
Mol Biol Evol ; 37(8): 2369-2385, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32302396

RESUMO

Evidence is accumulating that evolutionary changes are not only common during biological invasions but may also contribute directly to invasion success. The genomic basis of such changes is still largely unexplored. Yet, understanding the genomic response to invasion may help to predict the conditions under which invasiveness can be enhanced or suppressed. Here, we characterized the genome response of the spotted wing drosophila Drosophila suzukii during the worldwide invasion of this pest insect species, by conducting a genome-wide association study to identify genes involved in adaptive processes during invasion. Genomic data from 22 population samples were analyzed to detect genetic variants associated with the status (invasive versus native) of the sampled populations based on a newly developed statistic, we called C2, that contrasts allele frequencies corrected for population structure. We evaluated this new statistical framework using simulated data sets and implemented it in an upgraded version of the program BayPass. We identified a relatively small set of single-nucleotide polymorphisms that show a highly significant association with the invasive status of D. suzukii populations. In particular, two genes, RhoGEF64C and cpo, contained single-nucleotide polymorphisms significantly associated with the invasive status in the two separate main invasion routes of D. suzukii. Our methodological approaches can be applied to any other invasive species, and more generally to any evolutionary model for species characterized by nonequilibrium demographic conditions for which binary covariables of interest can be defined at the population level.


Assuntos
Adaptação Biológica , Drosophila/genética , Genoma de Inseto , Espécies Introduzidas , Modelos Genéticos , Animais , Frequência do Gene
8.
PLoS Genet ; 11(10): e1005592, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26485701

RESUMO

Early embryogenesis is a unique developmental stage where genetic control of development is handed off from mother to zygote. Yet the contribution of this transition to the evolution of gene expression is poorly understood. Here we study two aspects of gene expression specific to early embryogenesis in Drosophila: sex-biased gene expression prior to the onset of canonical X chromosomal dosage compensation, and the contribution of maternally supplied mRNAs. We sequenced mRNAs from individual unfertilized eggs and precisely staged and sexed blastoderm embryos, and compared levels between D. melanogaster, D. yakuba, D. pseudoobscura and D. virilis. First, we find that mRNA content is highly conserved for a given stage and that studies relying on pooled embryos likely systematically overstate the degree of gene expression divergence. Unlike studies done on larvae and adults where most species show a larger proportion of genes with male-biased expression, we find that transcripts in Drosophila embryos are largely female-biased in all species, likely due to incomplete dosage compensation prior to the activation of the canonical dosage compensation mechanism. The divergence of sex-biased gene expression across species is observed to be often due to lineage-specific decrease of expression; the most drastic example of which is the overall reduction of male expression from the neo-X chromosome in D. pseudoobscura, leading to a pervasive female-bias on this chromosome. We see no evidence for a faster evolution of expression on the X chromosome in embryos (no "faster-X" effect), unlike in adults, and contrary to a previous study on pooled non-sexed embryos. Finally, we find that most genes are conserved in regard to their maternal or zygotic origin of transcription, and present evidence that differences in maternal contribution to the blastoderm transcript pool may be due to species-specific divergence of transcript degradation rates.


Assuntos
Blastoderma/crescimento & desenvolvimento , Mecanismo Genético de Compensação de Dose , Desenvolvimento Embrionário/genética , Evolução Molecular , RNA Mensageiro/genética , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , RNA Mensageiro/biossíntese , Razão de Masculinidade , Especificidade da Espécie , Cromossomo X/genética
9.
PLoS Genet ; 9(9): e1003748, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24068946

RESUMO

To better characterize how variation in regulatory sequences drives divergence in gene expression, we undertook a systematic study of transcription factor binding and gene expression in blastoderm embryos of four species, which sample much of the diversity in the 40 million-year old genus Drosophila: D. melanogaster, D. yakuba, D. pseudoobscura and D. virilis. We compared gene expression, measured by mRNA-seq, to the genome-wide binding, measured by ChIP-seq, of four transcription factors involved in early anterior-posterior patterning. We found that mRNA levels are much better conserved than individual transcription factor binding events, and that changes in a gene's expression were poorly explained by changes in adjacent transcription factor binding. However, highly bound sites, sites in regions bound by multiple factors and sites near genes are conserved more frequently than other binding, suggesting that a considerable amount of transcription factor binding is weakly or non-functional and not subject to purifying selection.


Assuntos
Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Fatores de Transcrição/genética , Animais , Sequência de Bases , Sítios de Ligação , Blastoderma/citologia , Blastoderma/crescimento & desenvolvimento , Blastoderma/metabolismo , Sequência Conservada/genética , Embrião não Mamífero , Elementos Facilitadores Genéticos , Ligação Proteica
10.
Integr Comp Biol ; 50(1): 63-74, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21558188

RESUMO

Thyroid hormones (THs), and more precisely the 3,3',5-triiodo-l-thyronine (T(3)) acetic derivative 3,3',5-triiodothyroacetic acid (TRIAC), have been shown to activate metamorphosis in amphioxus. However, it remains unknown whether TRIAC is endogenously synthesized in amphioxus and more generally whether an active TH metabolism is regulating metamorphosis. Here we show that amphioxus naturally produces TRIAC from its precursors T(3) and l-thyroxine (T(4)), supporting its possible role as the active TH in amphioxus larvae. In addition, we show that blocking TH production inhibits metamorphosis and that this effect is compensated by exogenous T(3), suggesting that a peak of TH production is important for advancement of proper metamorphosis. Moreover, several amphioxus genes encoding proteins previously proposed to be involved in the TH signaling pathway display expression profiles correlated with metamorphosis. In particular, thyroid hormone receptor (TR) and deiodinases gene expressions are either up- or down-regulated during metamorphosis and by TH treatments. Overall, these results suggest that an active TH metabolism controls metamorphosis in amphioxus, and that endogenous TH production and metabolism as well as TH-regulated metamorphosis are ancestral in the chordate lineage.


Assuntos
Cordados não Vertebrados/fisiologia , Metamorfose Biológica , Receptores dos Hormônios Tireóideos/metabolismo , Tri-Iodotironina/análogos & derivados , Animais , Antitireóideos/farmacologia , Cordados não Vertebrados/efeitos dos fármacos , Cordados não Vertebrados/genética , Cromatografia Líquida de Alta Pressão , Regulação da Expressão Gênica no Desenvolvimento , Larva/efeitos dos fármacos , Larva/genética , Larva/fisiologia , Metaboloma , Propiltiouracila/farmacologia , Tiroxina/análogos & derivados , Tiroxina/farmacologia , Tri-Iodotironina/metabolismo
11.
J Biol Chem ; 284(3): 1938-48, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-18986992

RESUMO

Retinoid X nuclear receptors (RXRs), as well as their insect orthologue, ultraspiracle protein (USP), play an important role in the transcription regulation mediated by the nuclear receptors as the common partner of many other nuclear receptors. Phylogenetic and structural studies have shown that the several evolutionary shifts have modified the ligand binding ability of RXRs. To understand the vertebrate-specific character of RXRs, we have studied the RXR ligand-binding domain of the cephalochordate amphioxus (Branchiostoma floridae), an invertebrate chordate that predates the genome duplication that produced the three vertebrates RXRs (alpha, beta, and gamma). Here we report the crystal structure of a novel apotetramer conformation of the AmphiRXR ligand-binding domain, which shows some similarity with the structures of the arthropods RXR/USPs. AmphiRXR adopts an apo antagonist conformation with a peculiar conformation of helix H11 filling the binding pocket. In contrast to the arthropods RXR/USPs, which cannot be activated by any RXR ligands, our functional data show that AmphiRXR, like the vertebrates/mollusk RXRs, is able to bind and be activated by RXR ligands but less efficiently than vertebrate RXRs. Our data suggest that amphioxus RXR is, functionally, an intermediate between arthropods RXR/USPs and vertebrate RXRs.


Assuntos
Cordados não Vertebrados/química , Evolução Molecular , Receptores X de Retinoides/química , Animais , Cordados não Vertebrados/metabolismo , Ligantes , Estrutura Quaternária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Receptores X de Retinoides/metabolismo , Relação Estrutura-Atividade
12.
Dev Genes Evol ; 218(11-12): 667-80, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18989698

RESUMO

Thyroid hormones (THs) have pleiotropic effects on vertebrate development, with amphibian metamorphosis as the most spectacular example. However, developmental functions of THs in non-vertebrate chordates are largely hypothetical and even TH endogenous production has been poorly investigated. In order to get better insight into the evolution of the thyroid hormone signaling pathway in chordates, we have taken advantage of the recent release of the amphioxus genome. We found amphioxus homologous sequences to most of the genes encoding proteins involved in thyroid hormone signaling in vertebrates, except the fast-evolving thyroglobulin: sodium iodide symporter, thyroid peroxidase, deiodinases, thyroid hormone receptor, TBG, and CTHBP. As only some genes encoding proteins involved in TH synthesis regulation were retrieved (TRH, TSH receptor, and CRH receptor but not their corresponding receptors and ligands), there may be another mode of upstream regulation of TH synthesis in amphioxus. In accord with the notion that two whole genome duplications took place at the base of the vertebrate tree, one amphioxus gene often corresponded to several vertebrate homologs. However, some amphioxus specific duplications occurred, suggesting that several steps of the TH pathway were independently elaborated in the cephalochordate and vertebrate lineages. The present results therefore indicate that amphioxus is capable of producing THs. As several genes of the TH signaling pathway were also found in the sea urchin genome, we propose that the thyroid hormone signaling pathway is of ancestral origin in chordates, if not in deuterostomes, with specific elaborations in each lineage, including amphioxus.


Assuntos
Vias Biossintéticas , Evolução Molecular , Transdução de Sinais , Hormônios Tireóideos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Cordados não Vertebrados/genética , Genoma , Iodeto Peroxidase/química , Iodeto Peroxidase/genética , Dados de Sequência Molecular , Alinhamento de Sequência , Hormônios Tireóideos/biossíntese
13.
Genesis ; 46(11): 657-72, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18932261

RESUMO

Metamorphosis displays a striking diversity in chordates, a deuterostome phylum that comprises vertebrates, urochordates (tunicates), and cephalochordates (amphioxus). In anuran amphibians, the tadpole loses its tail, develops limbs, and undergoes profound changes at the behavioral, physiological, biochemical, and ecological levels. In ascidian tunicates, the tail is lost and the head tissues are drastically remodeled into the adult animal, whereas in amphioxus, the highly asymmetric larva transforms into a relatively symmetric adult. This wide diversity has led to the proposal that metamorphosis evolved several times independently in the different chordate lineages during evolution. However, the molecular mechanisms involved in metamorphosis are largely unknown outside amphibians and teleost fishes, in which metamorphosis is regulated by the thyroid hormones (TH) T3 and T4 binding to their receptors (thyroid hormone receptors). In this review, we compare metamorphosis in chordates and then propose a unifying definition of the larva-to-adult transition, based on the conservation of the role of THs and some of their derivatives as the main regulators of metamorphosis. According to this definition, all chordates (if not, all deuterostomes) have a homologous metamorphosis stage during their postembryonic development. The intensity and the nature of the morphological remodeling varies extensively among taxa, from drastic remodeling like in some ascidians or amphibians to more subtle events, as in mammals.


Assuntos
Cordados/crescimento & desenvolvimento , Cordados/genética , Metamorfose Biológica , Hormônios Tireóideos/fisiologia , Animais , Evolução Biológica , Receptores dos Hormônios Tireóideos/fisiologia
14.
Dev Genes Evol ; 218(11-12): 651-65, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18815806

RESUMO

The nuclear hormone receptors (NRs) form a superfamily of transcription factors unified by conserved protein structure and mode of function. While most members of this superfamily are activated by ligands, such as thyroid hormones, steroids, vitamin D or retinoic acid, other NRs are called orphan receptors because they have no known ligand. NR-dependent signaling is crucial for vertebrate development with the majority of receptors being expressed in the developing embryo. Due to massive gene duplications during vertebrate diversification, there are usually more NRs in vertebrates than in invertebrates. In this study, we examine the evolutionary diversification of the NR superfamily and of NR-dependent signaling in chordates (vertebrates, tunicates, and amphioxus). We take advantage of the unique features of the genome of the invertebrate amphioxus, which is characterized by a vertebrate-like gene content without having undergone massive duplications, to assess the NR signaling complement (NRs and NR coregulators) of the ancestral chordate. We find 33 NRs in amphioxus, which are more NRs than originally anticipated. This increase is mainly due to an amphioxus-specific duplication of genes encoding receptors of the NR1H group. In addition, there are three heterologous NRs in amphioxus that could not be placed within the framework of the NR superfamily. Apart from these exceptions, there is usually one amphioxus NR or NR signaling coregulator for each paralogous group of two, three, or four human receptors suggesting that the ancestral chordate had a set of 22 different NRs plus one copy of each NR coregulator.


Assuntos
Cordados não Vertebrados/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Animais , Cordados não Vertebrados/metabolismo , Evolução Molecular , Genoma , Filogenia
15.
Mol Cell Endocrinol ; 293(1-2): 5-16, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18634845

RESUMO

Comparative endocrinology considers the evolution of bioregulatory systems and the anatomical structures and molecules that constitute the neuroendocrine and endocrine systems. One aim of comparative endocrinology is to trace the origins of the main endocrine systems. The understanding of the evolution of the ligand/receptor couple is central to this objective. One classical approach to tackle this question is the characterization of receptors and ligands in various types of non-model organisms using as a starting point the knowledge accumulated on classical models such as mammals (mainly human and mouse) and arthropods (with Drosophila among other insects). In this review we discuss the potential caveats associated to this two-by-two comparison between a classical model and non-model organisms. We suggest that the use of an evolutionary approach involving comparisons of several organisms in a coherent framework permits reconstruction of the most probable scenarios. The use of the vast amount of genomic data now available, coupled to functional experiments, offers unprecedented possibilities to trace back the origins of the main ligand/receptor couples.


Assuntos
Sistema Endócrino/fisiologia , Evolução Molecular , Genômica , Ligantes , Receptores Citoplasmáticos e Nucleares/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Drosophila/genética , Drosophila/metabolismo , Deleção de Genes , Duplicação Gênica , Humanos , Filogenia , Receptores Citoplasmáticos e Nucleares/metabolismo , Recombinação Genética
16.
BMC Evol Biol ; 8: 219, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18655705

RESUMO

BACKGROUND: The origin of nuclear receptors (NRs) and the question whether the ancestral NR was a liganded or an unliganded transcription factor has been recently debated. To obtain insight into the evolution of the ligand binding ability of estrogen receptors (ER), we comparatively characterized the ER from the protochordate amphioxus (Branchiostoma floridae), and the ER from lamprey (Petromyzon marinus), a basal vertebrate. RESULTS: Extensive phylogenetic studies as well as signature analysis allowed us to confirm that the amphioxus ER (amphiER) and the lamprey ER (lampER) belong to the ER group. LampER behaves as a "classical" vertebrate ER, as it binds to specific DNA Estrogen Responsive Elements (EREs), and is activated by estradiol (E2), the classical ER natural ligand. In contrast, we found that although amphiER binds EREs, it is unable to bind E2 and to activate transcription in response to E2. Among the 7 natural and synthetic ER ligands tested as well as a large repertoire of 14 cholesterol derivatives, only Bisphenol A (an endocrine disruptor with estrogenic activity) bound to amphiER, suggesting that a ligand binding pocket exists within the receptor. Parsimony analysis considering all available ER sequences suggest that the ancestral ER was not able to bind E2 and that this ability evolved specifically in the vertebrate lineage. This result does not support a previous analysis based on ancestral sequence reconstruction that proposed the ancestral steroid receptor to bind estradiol. We show that biased taxonomic sampling can alter the calculation of ancestral sequence and that the previous result might stem from a high proportion of vertebrate ERs in the dataset used to compute the ancestral sequence. CONCLUSION: Taken together, our results highlight the importance of comparative experimental approaches vs ancestral reconstructions for the evolutionary study of endocrine systems: comparative analysis of extant ERs suggests that the ancestral ER did not bind estradiol and that it gained the ability to be regulated by estradiol specifically in the vertebrate lineage, before lamprey split.


Assuntos
Cordados não Vertebrados/genética , Estradiol/metabolismo , Evolução Molecular , Petromyzon/genética , Receptores de Estrogênio/genética , Sequência de Aminoácidos , Animais , Compostos Benzidrílicos , Linhagem Celular , Cordados não Vertebrados/metabolismo , Clonagem Molecular , Genes Reporter , Humanos , Dados de Sequência Molecular , Petromyzon/metabolismo , Fenóis/metabolismo , Filogenia , Elementos de Resposta , Alinhamento de Sequência , Ativação Transcricional
17.
Curr Biol ; 18(11): 825-30, 2008 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-18514519

RESUMO

Most studies in evolution are centered on how homologous genes, structures, and/or processes appeared and diverged. Although historical homology is well defined as a concept, in practice its establishment can be problematic, especially for some morphological traits or developmental processes. Metamorphosis in chordates is such an enigmatic character. Defined as a spectacular postembryonic larva-to-adult transition, it shows a wide morphological diversity between the different chordate lineages, suggesting that it might have appeared several times independently. In vertebrates, metamorphosis is triggered by binding of the thyroid hormones (THs) T(4) and T(3) to thyroid-hormone receptors (TRs). Here we show that a TH derivative, triiodothyroacetic acid (TRIAC), induces metamorphosis in the cephalochordate amphioxus. The amphioxus TR (amphiTR) mediates spontaneous and TRIAC-induced metamorphosis because it strongly binds to TRIAC, and a specific TR antagonist, NH3, inhibits both spontaneous and TRIAC-induced metamorphosis. Moreover, as in amphibians, amphiTR expression levels increase around metamorphosis and are enhanced by THs. Therefore, TH-regulated metamorphosis, mediated by TR, is an ancestral feature of all chordates. This conservation of a regulatory network supports the homology of metamorphosis in the chordate lineage.


Assuntos
Evolução Biológica , Cordados não Vertebrados/crescimento & desenvolvimento , Metamorfose Biológica/fisiologia , Receptores dos Hormônios Tireóideos/fisiologia , Hormônios Tireóideos/fisiologia , Animais
18.
Mol Phylogenet Evol ; 47(1): 73-83, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18328735

RESUMO

Despite numerous studies, questions remain about the evolutionary history of Ursidae and additional independent genetic markers were needed to elucidate these ambiguities. For this purpose, we sequenced ten nuclear genes for all the eight extant bear species. By combining these new sequences with those of four other recently published nuclear markers, we provide new insights into the phylogenetic relationships of the Ursidae family members. The hypothesis that the giant panda was the first species to diverge among ursids is definitively confirmed and the precise branching order within the Ursus genus is clarified for the first time. Moreover, our analyses indicate that the American and the Asiatic black bears do not cluster as sister taxa, as had been previously hypothesised. Sun and sloth bears clearly appear as the most basal ursine species but uncertainties about their exact relationships remain. Since our larger dataset did not enable us to clarify this last question, identifying rare genomic changes in bear genomes could be a promising solution for further studies.


Assuntos
Núcleo Celular/genética , Filogenia , Ursidae/classificação , Ursidae/genética , Animais , Sequência de Bases , DNA/isolamento & purificação , Primers do DNA , Reação em Cadeia da Polimerase
19.
J Exp Zool B Mol Dev Evol ; 308(4): 484-93, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17520703

RESUMO

The cephalochordate amphioxus (Branchiostoma sp.) is an important animal model for studying the evolution of chordate developmental mechanisms. Obtaining amphioxus embryos is a key step for these studies. It has been shown that an increase of 3-4 degrees C in water temperature triggers spawning of the European amphioxus (Branchiostoma lanceolatum) in captivity, however, very little is known about the natural spawning behavior of this species in the field. In this work, we have followed the spawning behavior of the European amphioxus during two spawning seasons (2004 and 2005), both in the field and in captivity. We show that animals in the field spawn approximately from mid-May through early July, but depending on the year, they show different patterns of spawning. Thus, even if temperature has a critical role in the induction of the spawning in captivity, it is not the major factor in the field. Moreover, we report some improvements on the methodology for inducing spawning in captivity (e.g. in maintenance, light cycle control and induction of spawning in a laboratory without running sea water system). These studies have important implications for amphioxus animal husbandry and for improving laboratory techniques to develop amphioxus as an experimental animal model.


Assuntos
Criação de Animais Domésticos , Cordados não Vertebrados/fisiologia , Animais , Reprodução
20.
Nucleic Acids Res ; 35(9): e65, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17426128

RESUMO

RNA-interference-driven loss of function in specific tissues in vivo should permit analysis of gene function in temporally and spatially defined contexts. However, delivery of efficient short hairpin RNA (shRNA) to target tissues in vivo remains problematic. Here, we demonstrate that efficiency of polyethylenimine (PEI)-delivered shRNA depends on the regulatory sequences used, both in vivo and in vitro. When tested in vivo, silencing of a luciferase target gene by shRNA produced from a hybrid construct composed of the CMV enhancer/promoter placed immediately upstream of an H1 promoter (50%) exceeds that obtained with the H1 promoter alone (20%). In contrast, in NIH 3T3 cells, the H1 promoter was more efficient than the hybrid construct (75 versus 60% inhibition of target gene expression, respectively). To test CMV-H1 shRNA efficiency against an endogenous gene in vivo, we used shRNA against thyroid hormone receptor alpha1 (TRalpha1). When vectorized in the mouse brain, the hybrid construct strongly derepressed CyclinD1-luciferase reporter gene expression, CyclinD1 being a negatively regulated thyroid hormone target gene. We conclude that promoter choice affects shRNA efficiency distinctly in different in vitro and in vivo situations and that a hybrid CMV-H1 construct is optimal for shRNA delivery in the mouse brain.


Assuntos
Encéfalo/metabolismo , Polietilenoimina/química , Regiões Promotoras Genéticas , Interferência de RNA , RNA não Traduzido/biossíntese , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Linhagem Celular , Ciclina D1/genética , Citomegalovirus/genética , Elementos Facilitadores Genéticos , Humanos , Luciferases/análise , Luciferases/genética , Camundongos , Células NIH 3T3 , RNA Interferente Pequeno/metabolismo , RNA não Traduzido/metabolismo , Ribonuclease P/genética , Receptores alfa dos Hormônios Tireóideos/antagonistas & inibidores , Receptores alfa dos Hormônios Tireóideos/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA