Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Soft Robot ; 5(6): 777-782, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30156468

RESUMO

Developing tunable lenses, an expansion-based mechanism for dynamic focus adjustment can provide a larger focal length tuning range than a contraction-based mechanism. Here, we develop an expansion-tunable soft lens module using a disk-type dielectric elastomer actuator (DEA) that creates axially symmetric pulling forces on a soft lens. Adopted from a biological accommodation mechanism in human eyes, a soft lens at the annular center of a disk-type DEA pair is efficiently stretched to change the focal length in a highly reliable manner. A soft lens with a diameter of 3 mm shows a 65.7% change in the focal length (14.3-23.7 mm) under a dynamic driving voltage signal control. We confirm a quadratic relation between lens expansion and focal length that leads to large focal length tunability obtainable in the proposed approach. The fabricated tunable lens module can be used for soft, lightweight, and compact vision components in robots, drones, vehicles, and so on.

2.
Opt Express ; 25(20): 23801-23808, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-29041330

RESUMO

We propose and demonstrate an all-solid-state tunable binary phase Fresnel lens with electrically controllable focal length. The lens is composed of a binary phase Fresnel zone plate, a circular acrylic frame, and a dielectric elastomer (DE) actuator which is made of a thin DE layer and two compliant electrodes using silver nanowires. Under electric potential, the actuator produces in-plane deformation in a radial direction that can compress the Fresnel zones. The electrically-induced deformation compresses the Fresnel zones to be contracted as high as 9.1% and changes the focal length, getting shorter from 20.0 cm to 14.5 cm. The measured change in the focal length of the fabricated lens is consistent with the result estimated from numerical simulation.

3.
Opt Express ; 24(1): 55-66, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26832237

RESUMO

We suggest a way to electrostatically control deformed geometry of an electrostatic deformable mirror (EDM) based on geometric modulation of a basement. The EDM is composed of a metal coated elastomeric membrane (active mirror) and a polymeric basement with electrode (ground). When an electrical voltage is applied across the components, the active mirror deforms toward the stationary basement responding to electrostatic attraction force in an air gap. Since the differentiated gap distance can induce change in electrostatic force distribution between the active mirror and the basement, the EDMs are capable of controlling deformed geometry of the active mirror with different basement structures (concave, flat, and protrusive). The modulation of the deformed geometry leads to significant change in the range of the focal length of the EDMs. Even under dynamic operations, the EDM shows fairly consistent and large deformation enough to change focal length in a wide frequency range (1~175 Hz). The geometric modulation of the active mirror with dynamic focus tunability can allow the EDM to be an active mirror lens for optical zoom devices as well as an optical component controlling field of view.

4.
Adv Mater ; 26(26): 4474-80, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24711161

RESUMO

A polymer-waveguide-based transparent and flexible force sensor array is proposed, which satisfies the principal requirements for a tactile sensor working on curvilinear surfaces, such as thinfilm architecture (thickness < 150 µm), localized force sensing (ca. 0-3 N), multiple-point re cognition (27 points), bending robustness (10.8% degradation at R = 1.5 mm), and fast response (bandwidth > 16 Hz).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA