Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(20): 12781-12794, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38733343

RESUMO

Circulating tumor DNA (ctDNA) detection has been acknowledged as a promising liquid biopsy approach for cancer diagnosis, with various ctDNA assays used for early detection and treatment monitoring. Dispersible magnetic nanoparticle-based electrochemical detection methods have been proposed as promising candidates for ctDNA detection based on the detection performance and features of the platform material. This study proposes a nanoparticle surface-localized genetic amplification approach by integrating Fe3O4-Au core-shell nanoparticles into polymerase chain reactions (PCR). These highly dispersible and magnetically responsive superparamagnetic nanoparticles act as nano-electrodes that amplify and accumulate target ctDNA in situ on the nanoparticle surface upon PCR amplification. These nanoparticles are subsequently captured and subjected to repetitive electrochemical measurements to induce reconfiguration-mediated signal amplification for ultrasensitive (∼3 aM) and rapid (∼7 min) metastatic breast cancer ctDNA detection in vitro. The detection platform can also detect metastatic biomarkers from in vivo samples, highlighting the potential for clinical applications and further expansion to rapid and ultrasensitive multiplex detection of various cancers.


Assuntos
DNA Tumoral Circulante , Eletrodos , Humanos , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Biópsia Líquida , Amplificação de Genes , Nanopartículas de Magnetita/química , Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Ouro/química , Propriedades de Superfície , Técnicas Eletroquímicas/métodos , Reação em Cadeia da Polimerase , Feminino
2.
ACS Sens ; 8(2): 839-847, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36707063

RESUMO

Of various molecular diagnostic assays, the real-time reverse transcription polymerase chain reaction is considered the gold standard for infection diagnosis, despite critical drawbacks that limit rapid detection and accessibility. To confront these issues, several nanoparticle-based molecular detection methods have been developed to a great extent, but still possess several challenges. In this study, a novel nucleic acid amplification method termed nanoparticle-based surface localized amplification (nSLAM) is paired with electrochemical detection (ECD) to develop a nucleic acid biosensor platform that overcomes these limitations. The system uses primer-functionalized Fe3O4-Au core-shell nanoparticles for nucleic acid amplification, which promotes the production of amplicons that accumulate on the nanoparticle surfaces, inducing significantly amplified currents during ECD that identify the presence of target genetic material. The platform, applying to the COVID-19 model, demonstrates an exceptional sensitivity of ∼1 copy/µL for 35 cycles of amplification, enabling the reduction of amplification cycles to 4 cycles (∼7 min runtime) using 1 fM complementary DNA. The nSLAM acts as an accelerator that actively promotes and participates in the nucleic acid amplification process through direct polymerization and binding of amplicons on the nanoparticle surfaces. This ultrasensitive fast-response system is a promising method for detecting emerging pathogens like the coronavirus and can be extended to detect a wider variety of biomolecules.


Assuntos
COVID-19 , Nanopartículas Multifuncionais , Nanopartículas , Ácidos Nucleicos , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos
3.
J Am Chem Soc ; 144(50): 22789-22804, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36490376

RESUMO

Chemical, physical, biological and materials engineering disciplines use a variety of chiroptical spectroscopies to probe geometrical and optical asymmetry in molecules and particles. Electronic (ECD) and vibrational (VCD) circular dichroism are the most common of these techniques and collectively enable the studies of electronic and vibronic transitions with energies between 0.1 and 5.0 eV. The vibrational states with characteristic energies in the range of 0.001-0.01 eV carry valuable information about concerted intermolecular motions in molecules and crystals involving multiple atoms. These vibronic transitions located in the terahertz (THz) part of the spectrum become increasingly more important for the chemistry, physics, and biology of complex molecules and materials However, the methodology and hardware of THz circular dichroism (TCD) are much less developed than the chiroptical spectroscopies for ultraviolet, visible, near- and mid infrared photons. Here we provide theoretical foundations, practical implementations, comparative assessments, and exemplary applications of TCD spectroscopy. We show that the sign, intensity, and position of TCD peaks are highly sensitive to the three-dimensional structure and long-range organization of molecular crystals, which offer unique capabilities to study (bio) molecules, their crystals, and nanoscale assemblies and apply the novel data processing methodologies. TCD also offers a convenient toolbox to identify new physical phenomena, such as chiral phonons and their propagation in nanostructured matter. We also discuss the major challenges, emerging opportunities and promising research directions, including broad investigation of chiral phonons observed in chiral (nano) crystals and emerging machine learning methodologies for TCD in biological and nanoscale structures. Ubiquity of low-frequency vibrations with rotational components in biomolecular structures, combined with sharpness of peaks in TCD spectra, enables a variety of technological translations.


Assuntos
Vibração , Dicroísmo Circular , Movimento (Física)
4.
Adv Sci (Weinh) ; 9(28): e2203842, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36058002

RESUMO

Tertiary lymphoid structures (TLSs) provide specialized niches for immune cells, resulting in improved prognoses for patients undergoing cancer immunotherapy. Shaping TLS-like niches may improve anti-cancer immunity and overcome the current limitations of immune cell-based immunotherapy. Here, it is shown that stromal vascular fraction (SVF) from adipose tissues can enhance dendritic cell (DC)-mediated T cell immunity by inducing ectopic T lymphocyte clusters. SVF cells expanded ex vivo have phenotypes and functions similar to those of fibroblastic reticular cells in a secondary lymphoid organ, and their properties can be modulated using three-dimensional spheroid culture and coculture with DCs spiked with antigen-loaded iron oxide-zinc oxide core-shell nanoparticles. Thereby, the combination of SVF spheroids and mature DCs significantly augments T cell recruitment and retention at the injection site. This strategy elicits enhanced antigen-specific immune response and anti-tumoral immunity in mice, illustrating the potential for a novel immunotherapeutic design using SVF as a structural scaffold for TLS.


Assuntos
Estruturas Linfoides Terciárias , Óxido de Zinco , Animais , Células Dendríticas , Imunidade Celular , Imunoterapia/métodos , Camundongos , Fração Vascular Estromal , Linfócitos T
5.
Adv Mater ; 34(27): e2110340, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35476306

RESUMO

Cell adhesion occurs when integrin recognizes and binds to Arg-Gly-Asp (RGD) ligands present in fibronectin. In this work, submolecular ligand size and spacing are tuned via template-mediated in situ growth of nanoparticles for dynamic macrophage modulation. To tune liganded gold nanoparticle (GNP) size and spacing from 3 to 20 nm, in situ localized assemblies of GNP arrays on nanomagnetite templates are engineered. 3 nm-spaced ligands stimulate the binding of integrin, which mediates macrophage-adhesion-assisted pro-regenerative polarization as compared to 20 nm-spaced ligands, which can be dynamically anchored to the substrate for stabilizing integrin binding and facilitating dynamic macrophage adhesion. Increasing the ligand size from 7 to 20 nm only slightly promotes macrophage adhesion, not observed with 13 nm-sized ligands. Increasing the ligand spacing from 3 to 17 nm significantly hinders macrophage adhesion that induces inflammatory polarization. Submolecular tuning of ligand spacing can dominantly modulate host macrophages.


Assuntos
Ouro , Nanopartículas Metálicas , Adesão Celular , Fibronectinas , Integrinas/metabolismo , Ligantes
6.
Nat Commun ; 13(1): 1144, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241688

RESUMO

In the crystallisation of nanomaterials, an assembly-based mechanism termed 'oriented attachment' (OA) has recently been recognised as an alternative mechanism of crystal growth that cannot be explained by the classical theory. However, attachment alignment during OA is not currently tuneable because its mechanism is poorly understood. Here, we identify the crystallographic disorder-order transitions in the OA of magnetite (Fe3O4) mesocrystals depending on the types of organic surface ligands on the building blocks, which produce different grain structures. We find that alignment variations induced by different surface ligands are guided by surface energy anisotropy reduction and surface deformation. Further, we determine the effects of alignment-dependent magnetic interactions between building blocks on the global magnetic properties of mesocrystals and their chains. These results revisit the driving force of OA and provide an approach for chemically controlling the crystallographic order in colloidal nanocrystalline materials directly related to grain engineering.

7.
Small ; 17(44): e2103575, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34561965

RESUMO

The fabrication of 3D hollow nanostructures not only allows the tactical provision of specific physicochemical properties but also broadens the application scope of such materials in various fields. The synthesis of 3D hollow nanocoils (HNCs), however, is limited by the lack of an appropriate template or synthesis method, thereby restricting the wide-scale application of HNCs. Herein, a strategy for preparing HNCs by harnessing a single sacrificial template to modulate the interfacial reaction at a solid-liquid interface that allows the shape-regulated transition is studied. Furthermore, the triggering of the Kirkendall effect in 3D HNCs is demonstrated. Depending on the final state of the transition metal ions reduced during the electrochemical preparation of HNCs, the surface states of the binding anions and the composition of the HNCs can be tuned. In a single-component CrPO4 HNC with a clean surface, the Kirkendall effect of the coil shape is analyzed at various points throughout the reaction. The rough-surface multicomponent MnOx P0.21 HNCs are complexed with ligand-modified BF4 -Mn3 O4 nanoparticles. The fabricated nanocomposite exhibits an overpotential decrease of 25 mV at neutral pH compared to pure BF4 -Mn3 O4 nanoparticles because of the increased active surface area.

8.
J Hazard Mater ; 408: 124870, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33387720

RESUMO

Anthrax is a bioterror agent because of its toxicity and the tolerance of its bacterial spores. Thus, researchers have attempted to develop various nanomaterials to detect dipicolinic acid (DPA), a biomarker of bacterial spores. Nanomaterials containing lanthanide ions have received considerable attention, owing to their potential to exhibit high sensitivity and selectivity in the detection of DPA via chelation with molecules. However, the fluorescent signals of the lanthanide complex are quenchable because the nanomaterials simultaneously absorb the excitation and emission light. For the precise detection of DPA, pure signals have to be obtained from the complex by alleviating the quenching effect of the nanomaterials. In this study, we develop a structure with terbium ion (Tb3+)-coordinated magnetite (Fe3O4) nanoparticle to detect DPA. Tb3+ can be detached from the magnetite during chelation with the DPA, and the complex can emit the unencumbered signals with improved detection limit through the application of a magnetic field. The detection system exhibits a significantly lower detection limit (5.4 nM) than the infectious dosage of anthrax (60 µM) with high selectivity and chemical stability. This study informs the improvement of detection limits via the separation of nanomaterials and lanthanide complex.


Assuntos
Nanopartículas de Magnetita , Térbio , Biomarcadores , Íons , Ácidos Picolínicos , Esporos Bacterianos
9.
Small ; 16(51): e2004696, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33215854

RESUMO

Mesocrystals, consisting of small subunits, have gained research interests owing to their ability to simultaneously modify material-specific properties and interactions among subunits. However, despite these unique characteristics, most mesocrystals are composed of a single material, and there is a disjunction between academic discovery and practical application. In this study, the synthesis of multi-component mesocrystalline nanoparticles composed of Fe3 O4 , ZnFe2 O4 , and ZnO subunits using a polymerization induced heterogeneous nucleation method is reported. The structure has small ZnFe2 O4 and ZnO nanocrystals covering the Fe3 O4 crystallites. It exhibits not only magnetic and catalytic properties determined by the size of each subunit nanocrystal, but also enhances photocatalytic and colloidal properties that originates because of its crowded arrangement. The magnetically recoverable catalysts exhibit remarkable photodegradation of organic molecules under the irradiation of visible light for 1 h; thus, improving its applicability in purifying a large amount of wastewater during the daytime.

10.
ACS Appl Mater Interfaces ; 12(30): 33483-33491, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32614594

RESUMO

The development of heat-generating magnetic nanostructures is critical for the effective management of tumors using magnetic hyperthermia. Herein, we demonstrate that polyethylene glycol (PEG)-coated iron oxide (magnetite, Fe3O4) multigranule nanoclusters (PEG-MGNCs) can enhance the efficiency of hyperthermia-based tumor suppression in vitro and in vivo. MGNCs consisting of granules (crystallites) measuring 22.9 nm in diameter were prepared via the hydrothermal polyol method, followed by the surface modification of MGNCs with PEG-dopamine. The freshly prepared PEG-MGNCs exhibit 145.9 ± 10.2 nm diameter on average under aqueous conditions. The three-dimensional structures of PEG-MGNCs enhance the hyperthermic efficacy compared with PEGylated single iron-oxide nanoparticles (NPs), resulting in severe heat damage to tumor cells in vitro. In the SCC7 tumor-bearing mice, near-infrared fluorescence dye (Cy5.5)-labeled PEG-MGNCs are successfully accumulated in the tumor tissues because of NP-derived enhanced permeation and retention effect. Finally, the tumor growth is significantly suppressed in PEG-MGNC-treated mice after two-times heat generation by using a longitudinal solenoid, which can generate an alternating magnetic field under high-frequency (19.5 kA/m, 389 kHz) induction. This study shows for the first time that the PEG-MGNCs greatly enhance the hyperthermic efficacy of tumor treatment both in vitro and in vivo.


Assuntos
Materiais Biocompatíveis/química , Compostos Férricos/química , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/química , Animais , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dopamina/química , Corantes Fluorescentes/química , Campos Magnéticos , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Tamanho da Partícula , Polietilenoglicóis/química , Distribuição Tecidual , Transplante Homólogo
11.
Small ; 16(20): e2001103, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32329574

RESUMO

Magnetic-plasmonic nanoparticles have received considerable attention for widespread applications. These nanoparticles (NPs) exhibiting surface-enhanced Raman scattering (SERS) activities are developed due to their potential in bio-sensing applicable in non-destructive and sensitive analysis with target-specific separation. However, it is challenging to synthesize these NPs that simultaneously exhibit low remanence, maximized magnetic content, plasmonic coverage with abundant hotspots, and structural uniformity. Here, a method that involves the conjugation of a magnetic template with gold seeds via chemical binding and seed-mediated growth is proposed, with the objective of obtaining plasmonic nanostructures with abundant hotspots on a magnetic template. To obtain a clean surface for directly functionalizing ligands and enhancing the Raman intensity, an additional growth step of gold (Au) and/or silver (Ag) atoms is proposed after modifying the Raman molecules on the as-prepared magnetic-plasmonic nanoparticles. Importantly, one-sided silver growth occurred in an environment where gold facets are blocked by Raman molecules; otherwise, the gold growth is layer-by-layer. Moreover, simultaneous reduction by gold and silver ions allowed for the formation of a uniform bimetallic layer. The enhancement factor of the nanoparticles with a bimetallic layer is approximately 107 . The SERS probes functionalized cyclic peptides are employed for targeted cancer-cell imaging and separation.


Assuntos
Nanopartículas Metálicas , Neoplasias , Ouro , Fenômenos Magnéticos , Neoplasias/diagnóstico por imagem , Prata , Análise Espectral Raman
12.
Nat Commun ; 11(1): 298, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941908

RESUMO

Mesocrystals are assemblies of smaller crystallites and have attracted attention because of their nonclassical crystallization pathway and emerging collective functionalities. Understanding the mesocrystal crystallization mechanism in chemical routes is essential for precise control of size and microstructure, which influence the function of mesocrystals. However, microstructure evolution from the nucleus stage through various crystallization pathways remains unclear. We propose a unified model on the basis of the observation of two crystallization pathways, with different ferric (oxyhydr)oxide polymorphs appearing as intermediates, producing microstructures of magnetite mesocrystal via different mechanisms. An understanding of the crystallization mechanism enables independent chemical control of the mesocrystal diameter and crystallite size, as manifested by a series of magnetic coercivity measurements. We successfully implement an experimental model system that exhibits a universal crystallite size effect on the magnetic coercivity of mesocrystals. These findings provide a general approach to controlling the microstructure through crystallization pathway selection, thus providing a strategy for controlling magnetic coercivity in magnetite systems.

13.
Pharmaceutics ; 11(10)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561470

RESUMO

Engineering and application of nanomaterials have recently helped advance various biomedical fields. Zinc oxide (ZnO)-based nanocomposites have become one of the most promising candidates for biomedical applications due to their biocompatibility, unique physicochemical properties, and cost-effective mass production. In addition, recent advances in nano-engineering technologies enable the generation of ZnO nanocomposites with unique three-dimensional structures and surface characteristics that are optimally designed for in vivo applications. Here, we review recent advances in the application of diverse ZnO nanocomposites, with an especial focus on their development as vaccine adjuvant and cancer immunotherapeutics, as well as their intrinsic properties interacting with the immune system and potential toxic effect in vivo. Finally, we summarize promising proof-of-concept applications as prophylactic and therapeutic vaccines against infections and cancers. Understanding the nano-bio interfaces between ZnO-based nanocomposites and the immune system, together with bio-effective design of the nanomaterial using nano-architectonic technology, may open new avenues in expanding the biomedical application of ZnO nanocomposites as a novel vaccine platform.

14.
ACS Appl Mater Interfaces ; 11(27): 23901-23908, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31187614

RESUMO

Barcode nanowires (BNWs) composed of multiple layered segments of different materials are attractive to bioengineering field due to their characteristics that allow the adjustment of physicochemical properties and conjugation with two or more types of biomolecules to facilitate multiple tasks. Here, we report a metallic Fe (iron)-Au (gold) BNW-based platform for capturing CD8 T cells and the interferon-γ (γ) they secrete, both of which play key roles in controlling infectious diseases such as tuberculosis, at the single-cell level. We also describe an efficient approach for conjugating distinct antibodies, which recognize different epitopes to appropriate materials. The platform achieved detection even with 4.45-35.6 µg mL-1 of BNWs. The T cell capture efficiency was close to 100% and the detection limit for interferon-γ was 460 pg mL-1. This work presents a potential guideline for the design of single-cell immunoassay platforms for eliminating diagnostic errors by unambiguously identifying disease-relevant immune mediators.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Separação Celular , Ouro/química , Interferon gama/imunologia , Ferro/química , Nanofios/química , Linfócitos T CD8-Positivos/citologia , Humanos , Imunoensaio , Interferon gama/análise , Sensibilidade e Especificidade
15.
Nanoscale ; 11(10): 4591-4600, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30809611

RESUMO

Zinc oxide (ZnO)-based nanocomposites have shown promising potential for various biomedical applications, including vaccine development, owing to their multifunctionality and biocompatibility. Here, we synthesized radially grown ZnO nanowires (NWs) on poly-l-lactic acid (PLLA) microfibers with unique 3-dimensional structure and applied them as therapeutic cancer vaccines. This inorganic-organic hybrid nanocomposite has mild cellular toxicity but efficiently delivers a tumor antigen into dendritic cells, cellular bridges between innate and adaptive immunity, to stimulate them to express inflammatory cytokines and activation surface markers. We also demonstrated that the hybrid nanocomposites successfully induce tumor antigen-specific cellular immunity and significantly inhibit tumor growth in vivo. ZnO NWs on PLLA fibers systemically reduced immune suppressive TReg cells and enhanced the infiltration of T cells into tumor tissues, compared to mice immunized with PLLA fibers coated with the antigen. Our current findings open a new avenue in extending the biomedical application of inorganic metal oxide-inert organic hybrid nanocomposites as a novel vaccine platform.


Assuntos
Antígenos de Neoplasias , Portadores de Fármacos , Imunoterapia , Nanocompostos , Nanofios , Neoplasias Experimentais/terapia , Poliésteres , Óxido de Zinco , Animais , Antígenos de Neoplasias/química , Antígenos de Neoplasias/farmacologia , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Dendríticas/patologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Imunidade Celular/efeitos dos fármacos , Camundongos , Nanocompostos/química , Nanocompostos/uso terapêutico , Nanofios/química , Nanofios/uso terapêutico , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Poliésteres/química , Poliésteres/farmacologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia
16.
ACS Appl Mater Interfaces ; 10(38): 32112-32119, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30168317

RESUMO

MnO x-based catalysts have been applied to the selective catalytic reduction of NO x with ammonia (NH3) owing to their high NO x removal efficiency and catalytic stability. In general, the fabrication of a variety of nanomaterials in a complex structure requires complicated processes, including heat treatment and a series of cleaning steps. In addition, MnO2 which has diverse polymorphs, exhibits different catalytic effects depending on its crystalline structure. Among them, synthesizing the ε-MnO2 phase, which functions as a nanocatalyst, has been the most difficult and has hardly been reported. Here, we report the synthesis of heterostructured composite nanocatalysts consisting of ε-MnO2 nanowires (NWs) and CeO2 nanoparticles (NPs) by applying pulsed currents sequentially. This method drastically simplifies the overall process compared to the conventional techniques. Through X-ray diffraction and transmission electron microscopy, it was confirmed that 2-3 nm of CeO2 NPs were formed on the surfaces of the ε-MnO2 NWs. The de-NO x efficiency of the nanocatalysts was analyzed in terms of content variation, specific surface area, and the elemental chemical state of the surface. A ceramic filter containing the nanocatalysts shows a high catalytic activity over the broad operating temperature range 100-400 °C. In the low-temperature region, ε-MnO2 plays a major role in determining the catalytic property, which is consistent with the Brunauer-Emmett-Teller (BET), H2 temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS) results. On the other hand, in the high-temperature region, the efficiency increases gradually as the content of CeO2 increases. The H2 TPR, NH3-temperature-programmed desorption, and XPS patterns reveal why the composite exhibits such superior characteristics in the temperature range mentioned above.

17.
Nanoscale ; 9(40): 15371-15378, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28975187

RESUMO

Zinc oxide (ZnO) nanocomposites have been widely applied in biomedical fields due to their multifunctionality and biocompatibility. However, the physicochemical properties of ZnO nanocomposite involved in nano-bio interactions are poorly defined. To assess the potential applicability of ZnO nanowires for intracellular delivery of biomolecules, we examined the dynamics of cellular activity of cells growing on densely packed ZnO nanowire arrays with two different physical conformations, vertical (VNW) or fan-shaped (FNW) nanowires. Although a fraction of human embryonic kidney cells cultured on VNW or FNW underwent rapid apoptosis, peaking at 6 h after incubation, cells could survive and replicate without significant apoptosis on the foreign substrate after 12 h of lag phase. In addition, the cells formed lamellipodia to wrap FNW, and efficiently took up peptides non-covalently coated on VNW and FNW within 30 min of incubation. Moreover, FNW could mediate intracellular delivery of associated DNAs and their gene expression, suggesting that ZnO nanowires transiently penetrate membranes to mediate intranuclear delivery of exogenous DNA. These results indicate that ZnO nanowire arrays can serve as nanocomposites for manipulating nano-bio interfaces if appropriately modified in a 3-dimensional conformation.

18.
Small ; 13(37)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28748546

RESUMO

Recently, polymer-coated magnetite (Fe3 O4 ) nanoparticles (NPs) are extensively studied for applications in therapeutics or diagnostics using photothermal effect. Therefore, it is essential to understand the interactions between Fe3 O4 NPs and polymers when optical stimuli are applied. Herein, the photonic reactions of Fe3 O4 NPs and polymer composites upon application of a 780 nm multiphoton laser are analyzed. The photonic reactions produce unique results including fluorescence from conformationally changed polymer and low-temperature phase transformation of Fe3 O4 NPs. Typically, π-conjugated chains are formed, inducing fluorescence through a series of main and side-chain cleavage reactions of polymers with the aliphatic chain. In addition, fluorescence is detected in the cellular system by photonic reactions between Fe3 O4 NPs and biomolecules. After multiphoton laser irradiation, light emission is detected near the intracellular Fe3 O4 NPs, and a stronger intensity is observed in large-sized NPs.


Assuntos
Lasers , Nanopartículas de Magnetita/química , Fótons , Polímeros/química , Temperatura , Linhagem Celular , Humanos , Conformação Molecular , Polimetil Metacrilato/química , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
19.
Chem Commun (Camb) ; 53(11): 1825-1828, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28111653

RESUMO

We report a facile fabrication concept for nanotubes (NTs) based upon template-assisted electrodeposition, which is widely applied for metallic nanowire (NW) synthesis. Co NTs have been synthesized into nanoporous anodized aluminum oxide (AAO) templates via electrodeposition by simply adding a small amount of chemicals including vanadyl ions (VO2+).

20.
Nanoscale ; 8(39): 17136-17140, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27714056

RESUMO

Magnetite nanoparticles combined with polymers produce white-light emission under multiphoton laser irradiation. Understanding the photonic reaction in magnetite-polymer composites is critical for application of magnetite NPs as photothermal agents. Laser irradiated magnetite nanoparticle-poly(methyl methacrylate) (PMMA) composites exhibit fluorescence due to the carbon double-bond formation resulting from the oxidation of the PMMA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA