Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361066

RESUMO

Ceramides, a class of sphingolipids containing a backbone of sphingoid base, are the most important and effective structural component for the formation of the epidermal permeability barrier. While ceramides comprise approximately 50% of the epidermal lipid content by mass, the content is substantially decreased in certain inflammatory skin diseases, such as atopic dermatitis (AD), causing improper barrier function. It is widely accepted that the endocannabinoid system (ECS) can modulate a number of biological responses in the central nerve system, prior studies revealed that activation of endocannabinoid receptor CB1, a key component of ECS, triggers the generation of ceramides that mediate neuronal cell fate. However, as the impact of ECS on the production of epidermal ceramide has not been studied, we here investigated whether the ECS stimulates the generation of epidermal ceramides in an IL-4-treated in vitro model of skin inflammation using N-palmitoyl serinol (PS), an analog of the endocannabinoid N-palmitoyl ethanolamine. Accordingly, an IL-4-mediated decrease in cellular ceramide levels was significantly stimulated in human epidermal keratinocytes (KC) following PS treatment through both de novo ceramide synthesis- and sphingomyelin hydrolysis-pathways. Importantly, PS selectively increases ceramides with long-chain fatty acids (FAs) (C22-C24), which mainly account for the formation of the epidermal barrier, through activation of ceramide synthase (CerS) 2 and Cer3 in IL-4-mediated inflamed KC. Furthermore, blockade of cannabinoid receptor CB1 activation by AM-251 failed to stimulate the production of total ceramide as well as long-chain ceramides in response to PS. These studies demonstrate that an analog of endocannabinoid, PS, stimulates the generation of specific ceramide species as well as the total amount of ceramides via the endocannabinoid receptor CB1-dependent mechanism, thereby resulting in the enhancement of epidermal permeability barrier function.


Assuntos
Ceramidas/metabolismo , Inflamação/metabolismo , Queratinócitos/metabolismo , Propanolaminas/farmacologia , Propilenoglicóis/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Pele/metabolismo , Células Cultivadas , Humanos , Técnicas In Vitro , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Propanolaminas/química , Propilenoglicóis/química , Pele/citologia , Pele/efeitos dos fármacos
2.
BMC Neurosci ; 22(1): 43, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157971

RESUMO

BACKGROUND: Autism, a childhood behavioral disorder, belongs to a large suite of diseases, collectively referred to as autism spectrum disorders (ASD). Though multifactorial in etiology, approximately 10% of ASD are associated with atopic dermatitis (AD). Moreover, ASD prevalence increases further as AD severity worsens, though these disorders share no common causative mutations. We assessed here the link between these two disorders in the standard, valproic acid mouse model of ASD. In prior studies, there was no evidence of skin involvement, but we hypothesized that cutaneous involvement could be detected in experiments conducted in BALB/c mice. BALB/c is an albino, laboratory-bred strain of the house mouse and is among the most widely used inbred strains used in animal experimentation. METHODS: We performed our studies in valproic acid (VPA)-treated BALB/c hairless mice, a standard mouse model of ASD. Mid-trimester pregnant mice received a single intraperitoneal injection of either valproic acid sodium salt dissolved in saline or saline alone on embryonic day 12.5 and were housed individually until postnatal day 21. Only the brain and epidermis appeared to be affected, while other tissues remain unchanged. At various postnatal time points, brain, skin and blood samples were obtained for histology and for quantitation of tissue sphingolipid content and cytokine levels. RESULTS: AD-like changes in ceramide content occurred by day one postpartum in both VPA-treated mouse skin and brain. The temporal co-emergence of AD and ASD, and the AD phenotype-dependent increase in ASD prevalence correlated with early appearance of cytokine markers (i.e., interleukin [IL]-4, 5, and 13), as well as mast cells in skin and brain. The high levels of interferon (IFN)γ not only in skin, but also in brain likely account for a significant decline in esterified very-long-chain N-acyl fatty acids in brain ceramides, again mimicking known IFNγ-induced changes in AD. CONCLUSION: Baseline involvement of both AD and ASD could reflect concurrent neuro- and epidermal toxicity, possibly because both epidermis and neural tissues originate from the embryonic neuroectoderm. These studies illuminate the shared susceptibility of the brain and epidermis to a known neurotoxin, suggesting that the atopic diathesis could be extended to include ASD.


Assuntos
Transtorno Autístico/induzido quimicamente , Transtorno Autístico/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/metabolismo , Fenótipo , Ácido Valproico/toxicidade , Animais , Anticonvulsivantes/toxicidade , Transtorno Autístico/genética , Dermatite Atópica/genética , Feminino , Mediadores da Inflamação/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo
3.
Front Mol Neurosci ; 12: 100, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068790

RESUMO

Although several agents have been identified to provide therapeutic benefits in Huntington disease (HD), the number of conventionally used treatments remains limited and only symptomatic. Thus, it is plausible that the need to identify new therapeutic targets for the development of alternative and more effective treatments is becoming increasingly urgent. Recently, the sphingosine-1-phosphate (S1P) axis has been reported to be a valid potential novel molecular target for therapy development in HD. Modulation of aberrant metabolism of S1P in HD has been proved to exert neuroprotective action in vitro settings including human HD iPSC-derived neurons. In this study, we investigated whether promoting S1P production by stimulating Sphingosine Kinase 1 (SPHK1) by the selective activator, K6PC-5, may have therapeutic benefit in vivo in R6/2 HD mouse model. Our findings indicate that chronic administration of 0.05 mg/kg K6PC-5 exerted an overall beneficial effect in R6/2 mice. It significantly slowed down the progressive motor deficit associated with disease progression, modulated S1P metabolism, evoked the activation of pro-survival pathways and markedly reduced the toxic mutant huntingtin (mHtt) aggregation. These results suggest that K6PC-5 may represent a future therapeutic option in HD and may potentially counteract the perturbed brain function induced by deregulated S1P pathways.

4.
Biomol Ther (Seoul) ; 25(5): 511-518, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28822991

RESUMO

Ultraviolet (UV) irradiation is a relevant environment factor to induce cellular senescence and photoaging. Both autophagy- and silent information regulator T1 (SIRT1)-dependent pathways are critical cellular processes of not only maintaining normal cellular functions, but also protecting cellular senescence in skin exposed to UV irradiation. In the present studies, we investigated whether modulation of autophagy induction using a novel synthetic SIRT1 activator, heptasodium hexacarboxymethyl dipeptide-12 (named as Aquatide), suppresses the UVB irradiation-induced skin aging. Treatment with Aquatide directly activates SIRT1 and stimulates autophagy induction in cultured human dermal fibroblasts. Next, we found that Aquatide-mediated activation of SIRT1 increases autophagy induction via deacetylation of forkhead box class O (FOXO) 1. Finally, UVB irradiation-induced cellular senescence measured by SA-ß-gal staining was significantly decreased in cells treated with Aquatide in parallel to occurring SIRT1 activation-dependent autophagy. Together, Aquatide modulates autophagy through SIRT1 activation, contributing to suppression of skin aging caused by UV irradiation.

6.
Dermatol Ther (Heidelb) ; 6(1): 47-56, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26841947

RESUMO

INTRODUCTION: The management of sensitive skin, which affects over 60% of the general population, has been a long-standing challenge for both patients and clinicians. Because defective epidermal permeability barrier is one of the clinical features of sensitive skin, barrier-enhancing products could be an optimal regimen for sensitive skin. In the present study, we evaluated the efficacy and safety of two barrier-enhancing products, i.e., Atopalm (®) Multi-Lamellar Emulsion (MLE) Cream and Physiogel (®) Intensive Cream for sensitive skin. METHODS: 60 patients with sensitive skin, aged 22-40 years old, were randomly assigned to one group treated with Atopalm MLE Cream, and another group treated with Physiogel Intensive Cream twice daily for 4 weeks. Lactic acid stinging test scores (LASTS), stratum hydration (SC) and transepidermal water loss (TEWL) were assessed before, 2 and 4 weeks after the treatment. RESULTS: Atopalm MLE Cream significantly lowered TEWL after 2 and 4 weeks of treatment (p < 0.01). In contrast, Physiogel Intensive Cream significantly increased TEWL after 2 weeks of treatment (p < 0.05) while TEWL significantly decreased after 4-week treatments. Moreover, both Atopalm MLE Cream and Physiogel Intensive Cream significantly increased SC hydration, and improved LASTS after 4 weeks of treatment. CONCLUSION: Both barrier-enhancing products are effective and safe for improving epidermal functions, including permeability barrier, SC hydration and LASTS, in sensitive skin. These products could be a valuable alternative for management of sensitive skin. FUNDING: Veterans Affairs Medical Center, San Francisco, California, USA, and NeoPharm Co., Ltd., Daejeon, Korea.

7.
Ann Dermatol ; 25(1): 5-11, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23467730

RESUMO

BACKGROUND: Topical steroid treatment induces diverse local Wand systemic adverse effects. Several approaches have been tried to reduce the steroid-induced adverse effects. Simultaneous application of physiological lipid mixture is also suggested. OBJECTIVE: Novel vehicles for topical glucocorticoids formulation were evaluated for the efficacy of reducing side-effects and the drug delivery properties of desonide, a low potency topical steroid. METHODS: Transcutaneous permeation and skin residual amount of desonide were measured using Franz diffusion cells. The in vivo anti-inflammatory activity was evaluated using murine model. RESULTS: Topical steroids formulation containing desonide, in either cream or lotion form, were prepared using multi-lamellar emulsion (MLE), and conventional desonide formulations were employed for comparison. MLE formulations did not affect the anti-inflammatory activity of the desonide in phobol ester-induced skin inflammation model, compared with conventional formulations. While the penetrated amounts of desonide were similar for all the tested formulations at 24 hours after application, the increased lag time was observed for the MLE formulations. Interestingly, residual amount of desonide in epidermis was significantly higher in lotion type MLE formulation. Steroid-induced adverse effects, including permeability barrier function impairment, were partially prevented by MLE formulation. CONCLUSION: Topical desonide formulation using MLE as a vehicle showed a better drug delivery with increased epidermal retention. MLE also partially prevented the steroid-induced side effects, such as skin barrier impairment.

8.
Exp Dermatol ; 20(4): 314-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21366697

RESUMO

Recently, we reported on the anti-ageing effects of K6PC-5. This compound induced keratinocyte differentiation and fibroblast proliferation by increasing sphingosine-1 phosphate synthesis. We performed this study to confirm the anti-ageing effects of new synthetic products (the K6EAA series) derived from K6PC-5 through an amino group induction. Cellular responses such as differentiation, proliferation and calcium mobilization were investigated using cultured human keratinocytes and fibroblasts. Also, we measured the expressions of collagen mRNA and protein using real time RT-PCR and ELISA, respectively. The K6EAA-L12 product, selected by in vitro screening, was evaluated for anti-ageing effects on intrinsically and extrinsically (photo) aged models of hairless mice. In the intrinsically aged murine skin, K6EAA-L12 showed anti-ageing effects by activating collagen synthesis, eventually causing dermal thickening. Also, in the photo-aged skin, the dermal collagen density and dermal thickness were increased. In photo-aged murine skin, K6EAA-L12 increased stratum corneum integrity by increasing corneodesmosome density and improved the barrier recovery rate. However, there were no changes in the expressions of epidermal differentiation maker proteins. In conclusion, topical K6EAA-L12, a new synthetic K6PC-5 derivative, improves intrinsically and extrinsically (photo) aged skin by increasing the collagen density and improving the skin barrier function.


Assuntos
Envelhecimento da Pele/efeitos dos fármacos , Esfingolipídeos/farmacologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Pelados , RNA Mensageiro/metabolismo , Pele/citologia , Pele/efeitos dos fármacos , Pele/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Perda Insensível de Água/efeitos dos fármacos
9.
Ann Dermatol ; 22(2): 143-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20548903

RESUMO

BACKGROUND: Several studies have been performed to evaluate the efficacy of dietary n-3 fatty acid for patients with renal dysfunction. While about 40% to 80% of patients with end-stage renal disease (ESRD) complain about pruritus and xerosis, there are few reports on the effects of topical n-3 fatty acid on these symptoms. OBJECTIVE: In order to investigate the possible beneficial effects of topical n-3 fatty acid, oils extracted from chia (Salvia hispanica) seed were formulated into topical products, the effects of which were measured. METHODS: Five healthy volunteers having xerotic pruritus symptoms and 5 patients with pruritus caused by either ESRD or diabetes were involved in this study. A topical formulation containing 4% chia seed oils were applied for an 8-week duration. Subjective itching symptoms were assessed on a 6-point scale, as were other skin functions, namely transepidermal water loss and skin capacitance. RESULTS: After the 8 weeks of application, significant improvements in skin hydration, lichen simplex chronicus, and prurigo nodularis were observed in all patients. A similar improvement was also observed among healthy volunteers with xerotic pruritus. Improvement of epidermal permeability barrier function and skin hydration, represented by trans-epidermal water loss and skin capacitance, respectively, were also observed. No adverse effects were observed in all the tested patients and volunteers. CONCLUSION: Chia seed oil can be used as an adjuvant moisturizing agent for pruritic skin, including that of ESRD patients.

10.
Arch Pharm Res ; 31(8): 1004-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18787789

RESUMO

PC-9S (N-Ethanol-2-mirystyl-3-oxo-stearamide) is a synthetic ceramide and has been known to be effective in atopic and psoriatic patients. K112PC-5 (2-Acetyl-N-(1,3-dihydroxyisopropyl)-tetradecanamide) is a novel ceramide derivative of PC-9S. In the present study, we examined the effect of K112PC-5 on macrophage and T lymphocyte function in primary macrophages and splenocytes, respectively, as well as the effect of topical application of K112PC-5 on skin inflammation and atopic dermatitis (AD) in mouse models. K112PC-5 inhibited lipopolysaccharide-induced nitrite generation in mouse peritoneal macrophages in a dose-dependent manner. However, K112PC-5 did not affect concanavalin A-induced proliferation, interleukin (IL)-2 secretion and IL-4 secretion in mouse splenocytes. In addition, K112PC-5 significantly suppressed the increase in phorbol ester-induced ear thickness in BALB/c mice. Further study demonstrated that topical application of K112PC-5 also inhibited AD induced by extracts of dust mites, Dermatophagoides pteronyssinus and Dermatophagoides farinae, in NC/Nga mice. Taken together, these results showed that K112PC-5 exerted an anti-inflammatory effect both in vitro and in vivo and proved to be beneficial in an animal model of AD. Our results suggest that K112PC-5 might be beneficial as a topical agent for the treatment of AD.


Assuntos
Ceramidas/farmacologia , Dermatite Atópica/prevenção & controle , Dermatite de Contato/prevenção & controle , Fármacos Dermatológicos/farmacologia , Administração Tópica , Alérgenos/toxicidade , Animais , Proliferação de Células/efeitos dos fármacos , Ceramidas/administração & dosagem , Dermatite Atópica/patologia , Dermatite de Contato/patologia , Fármacos Dermatológicos/administração & dosagem , Orelha Externa/patologia , Feminino , Interleucina-1/biossíntese , Interleucina-4/biossíntese , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/biossíntese , Pyroglyphidae , Pele/patologia , Linfócitos T/efeitos dos fármacos , Acetato de Tetradecanoilforbol
11.
Exp Dermatol ; 17(11): 958-64, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18721197

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease that commonly begins in childhood. K6PC-9p (N-(Ethyl dihydrogenphosphate)-2-hexyl-3-oxo-decanamide) is a synthetic ceramide derivative of PC-9S (N-Ethanol-2-mirystyl-3-oxo-staramide), which was known to be effective in atopic patients. In this study, we examined the effect of topical application of K6PC-9p on skin inflammation and AD-like skin lesions in mouse models. K6PC-9p dose-dependently inhibited phorbol ester-induced increase in ear thickness in BALB/c mice. Moreover, topical application of K6PC-9p suppressed dust mite extract-induced AD-like skin lesions in NC/Nga mice. Histopathological analysis revealed that both ear swelling and leucocyte infiltration were suppressed by K6PC-9p treatment. K6PC-9p also suppressed IL-4 and TNF-alpha expression in the ears and mast cell infiltration into the ears in NC/Nga mice. Further study demonstrated that K6PC-9p inhibited ConA-induced IL-4 secretion and LPS-induced macrophage activation. Taken together, our results showed that topical application of K6PC-9p exerts beneficial effects in animal model of skin inflammation and AD, suggesting that K6PC-9p might be a promising topical agent for the treatment of inflammatory skin diseases.


Assuntos
Ceramidas/uso terapêutico , Dermatite Atópica/prevenção & controle , Dermatite de Contato/prevenção & controle , Administração Tópica , Animais , Antígenos de Dermatophagoides/farmacologia , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ceramidas/química , Dermatite Atópica/patologia , Dermatite de Contato/etiologia , Dermatite de Contato/patologia , Modelos Animais de Doenças , Orelha Externa/efeitos dos fármacos , Orelha Externa/metabolismo , Orelha Externa/patologia , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Hidrocortisona/administração & dosagem , Hidrocortisona/uso terapêutico , Interleucina-4/genética , Interleucina-4/metabolismo , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Mastócitos/citologia , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Acetato de Tetradecanoilforbol/toxicidade , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
12.
J Invest Dermatol ; 128(9): 2166-78, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18385762

RESUMO

Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, regulates multiple cellular responses such as Ca(2+) signaling, growth, survival, and differentiation. Because sphingosine kinase (SphK) is the enzyme directly responsible for production of S1P, many factors have been identified that regulate its activity and subsequent S1P levels. Here we synthesized a previously unidentified SphK activator, K6PC-5, and have studied its effects on intracellular Ca(2+) signaling in HaCaT cells and epidermal differentiation in murine skin. K6PC-5, a hydrophobic compound chemically named N-(1,3-dihydroxyisopropyl)-2-hexyl-3-oxo-decanamide, activated SphK (obtained from C57BL/6 murine blood and F9-12 cell lysates) in a dose-dependent manner. K6PC-5 induced both intracellular Ca(2+) concentration ([Ca(2+)](i)) oscillations in HaCaT cells and Ca(2+) mobilization in hairless mouse epidermis. Both dimethylsphingosine (DMS) and dihydroxysphingosine (DHS), SphK inhibitors, and transfection of SphK1-siRNA blocked K6PC-5-induced increases in [Ca(2+)](i). The K6PC-5-induced [Ca(2+)](i) oscillations were dependent on thapsigargin-sensitive Ca(2+) stores and Ca(2+) entry, but independent of the classical phospholipase C-mediated pathway. In addition, K6PC-5 enhanced the expression of involucrin and filaggrin, specific differentiation-associated marker proteins in HaCaT cells, whereas transfection of SphK1-siRNA blocked the increase of involucrin. Topical K6PC-5 also enhanced the expression of involucrin, loricrin, filaggrin, and keratin 5 in intact murine epidermis. Finally, topical K6PC-5 inhibited epidermal hyperplasia by exerting antiproliferative effects on keratinocytes in murine epidermis. These results suggest that K6PC-5 acts to regulate both differentiation and proliferation of keratinocytes via [Ca(2+)](i) responses through S1P production. Thus, regulation of S1P levels may represent a novel approach for treatment of skin disorders characterized by abnormal differentiation and proliferation, such as atopic dermatitis and psoriasis.


Assuntos
Amidas/farmacologia , Sinalização do Cálcio/fisiologia , Diferenciação Celular/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Epiderme/metabolismo , Lisofosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/análogos & derivados , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Epiderme/efeitos dos fármacos , Epiderme/patologia , Feminino , Proteínas Filagrinas , Humanos , Hiperplasia , Proteínas de Filamentos Intermediários/metabolismo , Queratina-5/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Pelados , Camundongos Endogâmicos C57BL , Neoplasias Embrionárias de Células Germinativas/patologia , Precursores de Proteínas/metabolismo , Esfingosina/metabolismo , Teratocarcinoma/patologia
13.
J Dermatol Sci ; 51(2): 89-102, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18420384

RESUMO

BACKGROUND: Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, regulates multiple cellular responses such as Ca(2+) signaling, growth, survival, and differentiation. Because sphingosine kinase (SK) is the enzyme directly responsible for the production of S1P, many factors have been identified that regulate its activity and subsequent S1P levels. To date, there are no reports to demonstrate a chemically induced, direct activation of SK. OBJECTIVE: Here we have studied the effects of K6PC-5 as a newly synthesized SK activator on fibroblast proliferation in both human fibroblasts and aged mouse skin. To demonstrate that K6PC-5 has S1P-mediated action mechanism in fibroblasts, we have measured SK-dependent intracellular Ca(2+) signaling. METHODS: Fibroblasts were cultured primarily from human foreskin and were used to study the effect of K6PC-5 and S1P on intracellular Ca(2+) signaling and fibroblast proliferation. Changes in intracellular Ca(2+) were detected by fluorescence with fura-2/AM. To study skin anti-aging effects of K6PC-5, we used intrinsically aged hairless mice (56 weeks old). RESULTS: K6PC-5 promoted fibroblast proliferation and procollagen production in human fibroblasts significantly. K6PC-5 induced intracellular Ca(2+) concentration ([Ca(2+)](i)) oscillations in human fibroblasts. Both dimethylsphingosine and dihydroxysphingosine, SK inhibitors, and the transfection of SK1-siRNA blocked the K6PC-5-induced increases in [Ca(2+)](i), an effect independent of the classical PLC/IP(3)-mediated pathway. The K6PC-5-induced [Ca(2+)](i) oscillations were dependent on thapsigargin-sensitive Ca(2+) stores and Ca(2+) entry. Topical application of K6PC-5 for 2 weeks to intrinsically aged hairless mice enhanced fibroblast proliferation, collagen production, and eventually increased dermal thickness (10%). K6PC-5 also promoted specific epidermal differentiation marker proteins, including involucrin, loricrin, filaggrin, and keratin 5, without any alterations on epidermal barrier function. CONCLUSION: These results suggest that K6PC-5 acts to regulate fibroblast proliferation through intracellular S1P production, and can further promote keratinocyte differentiation. We anticipate that the regulation of S1P levels may represent a novel approach for the treatment of skin disorders, including skin aging.


Assuntos
Envelhecimento/efeitos dos fármacos , Amidas/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Pele/metabolismo , Envelhecimento/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proteínas Filagrinas , Humanos , Lisofosfolipídeos/antagonistas & inibidores , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Camundongos Pelados , Modelos Animais , Pró-Colágeno/metabolismo , Pele/citologia , Pele/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/antagonistas & inibidores , Esfingosina/metabolismo
14.
Exp Dermatol ; 17(10): 829-36, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18341573

RESUMO

Sphingosine-1-phosphate (S1P), which is formed by phosphorylation of sphingosine through a process catalysed by sphingosine kinase (SK), is a multifunctional mediator of a variety of cellular responses including proliferation, differentiation, motility, and survival. K6PC-5, which was recently synthesized as a novel SK activator, is expected to increase S1P levels. Indeed studies have already demonstrated that K6PC-5 exhibits anti-aging effects on intrinsic aged murine skin by increasing fibroblasts, collagen synthesis, dermal thickness, and epidermal differentiation. However, photoaging and intrinsic aging have highly different clinical and histopathological properties. In this study, we developed a photoaged murine model by exposing mice that were 56 weeks old to ultraviolet (UV)B and UVA radiation for 8 weeks. We then investigated whether K6PC-5, as an SK activator, had anti-aging effects on photoaged murine skin in addition to its effects on intrinsic aged murine skin and determined the mechanism. K6PC-5 increased dermal collagen density in photoaged skin through increases in fibroblasts and collagen production. Photoaged murine skin treated with K6PC-5 showed an increase in stratum corneum (SC) integrity with increased corneodesmosome density and an improvement in barrier recovery rate. Matrix metalloproteinase 13 remained unchanged. These results indicate that topical application of K6PC-5 improves photoaged skin by improving skin barrier and increasing fibroblast count and function. In conclusion, K6PC-5, as an S1P activator, improves long-term UV-exposed aged skin as well as intrinsic aged skin.


Assuntos
Amidas/farmacologia , Epiderme/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Raios Ultravioleta , Animais , Biomarcadores/metabolismo , Divisão Celular/efeitos dos fármacos , Colágeno/metabolismo , Derme/citologia , Derme/enzimologia , Derme/efeitos da radiação , Ativação Enzimática/efeitos dos fármacos , Células Epidérmicas , Epiderme/efeitos da radiação , Feminino , Fibroblastos/citologia , Fibroblastos/enzimologia , Fibroblastos/efeitos da radiação , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Pelados , Esfingosina/análogos & derivados , Esfingosina/metabolismo
15.
Int Immunopharmacol ; 7(13): 1589-97, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17996668

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease. K6PC-9 (N-Ethanol-2-hexyl-3-oxo-decanamide) is a novel synthetic ceramide derivative of PC-9S (N-Ethanol-2-mirystyl-3-oxo-stearamide), which was known to be effective in atopic and psoriatic patients. To investigate the immunomodulatory activity of K6PC-9, we examined the effect of K6PC-9 on T lymphocyte and macrophage function and the effect of topical application of K6PC-9 on skin inflammation and AD-like skin lesions in mouse models. K6PC-9 had no effect on concanavalin A-induced proliferation, interleukin (IL)-2 secretion and IL-4 secretion in mouse splenocytes. In contrast, lipopolysaccharide-induced nitrite generation was potently suppressed by K6PC-9 in mouse peritoneal macrophages. In mouse model of skin inflammation, K6PC-9 inhibited phorbol ester-induced increase in ear thickness and expression of tumor necrosis factor-alpha in the ear of BALB/c mice. Topical application of K6PC-9 also suppressed mite extract-induced AD-like skin lesions in NC/Nga mice. Increase in ear thickness was significantly inhibited by K6PC-9 in this model. K6PC-9 also blocked the infiltration of mast cells and neutrophils into the ear. Further study demonstrated that the mRNA expression of tumor necrosis factor-alpha and adhesion molecules, such as vascular cell adhesion molecule-1, intercellular adhesion molecule-1, E-selectin, was also suppressed by K6PC-9 in the ear of mite extract-treated NC/Nga mice. Taken together, the results presented in this report show that K6PC-9 has an anti-inflammatory potential and exerts beneficial effects in an animal model of AD, indicating that K6PC-9 might be used as a topical agent for the treatment of AD.


Assuntos
Ceramidas/administração & dosagem , Dermatite Atópica/prevenção & controle , Pyroglyphidae/imunologia , Administração Cutânea , Animais , Dermatite Atópica/etiologia , Dermatite Atópica/metabolismo , Feminino , Molécula 1 de Adesão Intercelular/genética , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/análise , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Acetato de Tetradecanoilforbol/toxicidade , Fator de Necrose Tumoral alfa/genética , Molécula 1 de Adesão de Célula Vascular/genética
16.
J Lipid Res ; 48(9): 1936-43, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17554144

RESUMO

Ceramide is an important constituent of stratum corneum lipids, which act as both physical barriers and signal modulators. We synthesized several ceramide derivatives and investigated their effects on keratinocyte differentiation. RT-PCR and Western blotting showed that the novel synthetic ceramide derivatives K6PC-4 [N-(2,3-dihydroxypropyl)-2-hexyl-3-oxo-decanamide], K6PC-5, [N-(1,3-dihydroxypropyl-2-hexyl-3-oxo-decanamide] and K6PC-9 (N-ethanol-2-hexyl-3-oxo-decanamide) [corrected] These ceramide derivatives elicited a rapid transient increase in intracellular calcium levels, which were measured using laser scanning confocal microscopy. In addition, K6PC-4, K6PC-5, and K6PC-9 stimulated the phosphorylation of p42/44 extracellular signal-regulated kinase and c-Jun N-terminal kinase. In a reconstituted epidermis model, K6PC-4, K6PC-5, and K6PC-9 significantly increased keratin 1 expression in the suprabasal layer. These results indicate that these novel synthetic ceramide derivatives have the potential to promote keratinocyte differentiation, suggesting that the lipid molecules are applicable for treating skin diseases involving abnormal keratinocyte differentiation.


Assuntos
Cálcio/metabolismo , Ceramidas/farmacologia , Queratinócitos/citologia , Queratinócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Recém-Nascido , Queratinócitos/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo
17.
J Biosci Bioeng ; 100(4): 429-36, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16310733

RESUMO

The dynamics of diesel oil biodegradation were previously investigated at initial substrate concentrations of 1000 to 20,000 ppm using Gordonia nitida isolated from wastewater. Following the gas chromatogram profiles of diesel oil degradation, diesel oil with concentrations of up to 15,000 ppm was efficiently degraded by this strain. At a concentrations of 20,000 ppm, however, the degradation by this strain was not effective. The enhancement of the biodegradation of diesel oi1 (at 15,000 and 20,000 ppm) by a synthetic mycolic acid biosurfactant (at 9, 90 and 900 ppm) was also investigated. In G. nitida inoculated cultures, the degradation of diesel oil was enhanced by the biosurfactant. For comparison, diesel oil degradation in batch incubations was measured after the addition of rhamnolipid and other surfactants. Synthetic mycolic acid enhanced the degradation to a greater extent than any other surfactant tested. Additionally, it was demonstrated that the degradation-enhancing property of synthetic mycolic acid was similar to that of rhamnolipid and Tween 80.


Assuntos
Óleos Combustíveis , Bactéria Gordonia/metabolismo , Ácidos Micólicos/química , Biodegradação Ambiental , Emulsões/química , Glicolipídeos/química , Ácidos Micólicos/síntese química , Polissorbatos/química , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA