Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharm Dev Technol ; : 1-10, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39422557

RESUMO

Asthma and Chronic Obstructive Pulmonary Disease (COPD) are major global health concerns, with inhalation therapy being a primary treatment method. Dry powder inhalers (DPIs) often face challenges related to particle aggregation, which can diminish drug delivery efficiency. This study investigates particle aggregation and aims to optimize the cohesion-adhesion balance to improve inhalation efficiency. Advanced techniques like atomic force microscopy and Raman imaging were used to analyze particle interactions, focusing on lactose ratios, particle morphology, and drug-drug interactions. The therapeutic efficacy of optimized formulations containing budesonide (BUD) and Arformoterol (AFT) was assessed using an asthma model, showing significant improvements in sRAW, neutrophil count, and tidal volume compared to the positive control, with p-values below 0.01. AFT exhibited comparable efficacy to Formoterol at half the dose. Additionally, pharmacokinetic studies demonstrated similar in vivo behavior between the drugs, confirming the therapeutic advantage of AFT, with p-values for AUC0-t and Cmax of .646 and .153, respectively. The fine particle fractions for AFT and BUD were 39.4% and 50.6%, respectively, indicating improved drug delivery efficiency and potential for better clinical outcomes in asthma and COPD patients.

2.
Int J Nanomedicine ; 19: 9195-9211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39267725

RESUMO

Purpose: Effective mucosal delivery of drugs continues to pose a significant challenge owing to the formidable barrier presented by the respiratory tract mucus, which efficiently traps and clears foreign particulates. The surface characteristics of micelles dictate their ability to penetrate the respiratory tract mucus. In this study, polymeric micelles loaded with insulin (INS) were modified using mucus-penetrative polymers. Methods: We prepared and compared polyethylene glycol (PEG)-coated micelles with micelles where cell-penetrating peptide (CPP) is conjugated to PEG. Systematic investigations of the physicochemical and aerosolization properties, performance, in vitro release, mucus and cell penetration, lung function, and pharmacokinetics/pharmacodynamics (PK/PD) of polymeric micelles were performed to evaluate their interaction with the respiratory tract. Results: The nano-micelles, with a particle size of <100 nm, exhibited a sustained-release profile. Interestingly, PEG-coated micelles exhibited higher diffusion and deeper penetration across the mucus layer. In addition, CPP-modified micelles showed enhanced in vitro cell penetration. Finally, in the PK/PD studies, the micellar solution demonstrated higher maximum concentration (Cmax) and AUC0-8h values than subcutaneously administered INS solution, along with a sustained blood glucose-lowering effect that lasted for more than 8 h. Conclusion: This study proposes the use of mucus-penetrating micelle formulations as prospective inhalation nano-carriers capable of efficiently transporting peptides to the respiratory tract.


Assuntos
Peptídeos Penetradores de Células , Insulina , Micelas , Polietilenoglicóis , Insulina/administração & dosagem , Insulina/farmacocinética , Insulina/química , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Animais , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacocinética , Humanos , Tamanho da Partícula , Administração por Inalação , Masculino , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Ratos Sprague-Dawley , Muco/química , Muco/metabolismo , Muco/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Glicemia/análise
3.
Pharmaceutics ; 16(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38931904

RESUMO

The aim of this study was to fabricate mini-tablets of polyhedrons containing theophylline using a fused deposition modeling (FDM) 3D printer, and to evaluate the correlation between release kinetics models and their geometric shapes. The filaments containing theophylline, hydroxypropyl cellulose (HPC), and EUDRAGIT RS PO (EU) could be obtained with a consistent thickness through pre-drying before hot melt extrusion (HME). Mini-tablets of polyhedrons ranging from tetrahedron to icosahedron were 3D-printed using the same formulation of the filament, ensuring equal volumes. The release kinetics models derived from dissolution tests of the polyhedrons, along with calculations for various physical parameters (edge, SA: surface area, SA/W: surface area/weight, SA/V: surface area/volume), revealed that the correlation between the Higuchi model and the SA/V was the highest (R2 = 0.995). It was confirmed that using 3D- printing for the development of personalized or pediatric drug products allows for the adjustment of drug dosage by modifying the size or shape of the drug while maintaining or controlling the same release profile.

4.
Pharmaceutics ; 16(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38931905

RESUMO

Dry-powder inhalers (DPIs) are valued for their stability but formulating them is challenging due to powder aggregation and limited flowability, which affects drug delivery and uniformity. In this study, the incorporation of L-leucine (LEU) into hot-melt extrusion (HME) was proposed to enhance dispersibility while simultaneously maintaining the high aerodynamic performance of inhalable microparticles. This study explored using LEU in HME to improve dispersibility and maintain the high aerodynamic performance of inhalable microparticles. Formulations with crystalline itraconazole (ITZ) and LEU were made via co-jet milling and HME followed by jet milling. The LEU ratio varied, comparing solubility, homogenization, and aerodynamic performance enhancements. In HME, ITZ solubility increased, and crystallinity decreased. Higher LEU ratios in HME formulations reduced the contact angle, enhancing mass median aerodynamic diameter (MMAD) size and aerodynamic performance synergistically. Achieving a maximum extra fine particle fraction of 33.68 ± 1.31% enabled stable deep lung delivery. This study shows that HME combined with LEU effectively produces inhalable particles, which is promising for improved drug dispersion and delivery.

5.
Int J Biol Macromol ; 253(Pt 1): 126560, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37640190

RESUMO

The present study aimed to investigate the effect of oral administration of snail-derived mucin extract (SM) on ameliorating constipation symptoms of loperamide-induced constipated rats (n = 6). The analytical results indicated that SM mainly contains a glucan-rich snail mucin heteropolysaccharide with high molecular weights (108.5-267.9 kDa), comprising primarily of glucose (64.9 %) and galactose (22.4 %) with some deoxyhexoses (5.0 %) and hexosamines (4.9 %). Daily SM administration at doses of 10-40 mg/kg/day to the loperamide-induced constipated rats significantly (p < 0.05) ameliorated the deterioration in fecal parameters, such as numbers and weight of feces, fecal water contents, and gastrointestinal transit ratio. The histomorphometric results showed that the loperamide-induced decreases in the thickness of mucosal and muscularis mucosae layers as well as the distribution of mucin and c-KIT-positive areas were significantly (p < 0.05) improved via SM consumption at all doses tested. SM administration at all doses significantly increased the expression of genes encoding tryptophan hydroxylases (TPH1 and TPH2; p < 0.05), tight junction molecules (OCLN, CLDN1, and TJP1; p < 0.05), and mucin (MUC2 and MUC4; p < 0.05), but significantly decreased the aquaporin-encoding genes (AQP3 and AQP8; p < 0.05). Gut microbial community analysis indicated that SM administration could modulate loperamide-induced dysbiosis by increasing the phyla Actinobacteria (11.72-12.64 % at 10-40 mg/kg doses; p < 0.05) and Firmicutes (79.33 % and 74.24 % at 20 and 40 mg/kg doses; p < 0.05) and decreasing the phyla Bacteroidetes (5.98-12.47 % at 10-40 mg/kg doses; p < 0.05) and Verrucomicrobia (2.21 % and 2.78 % at 20 and 40 mg/kg doses; p < 0.05), suggesting that SM administration is effective in ameliorating constipation by controlling gut microbial communities. These findings can be utilized as fundamental data for developing novel functional materials using SM to prevent or treat constipation.


Assuntos
Microbioma Gastrointestinal , Loperamida , Ratos , Animais , Loperamida/efeitos adversos , Mucinas , Glucanos/uso terapêutico , Ecossistema , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico
6.
J Control Release ; 360: 796-809, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437850

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the 4th leading cause of cancer-related death and has a poor 5-year overall survival. The superior therapeutic benefits of combination or co-administration of drugs as intraperitoneal chemotherapy have increased interest in developing strategies to deliver chemotherapeutic agents to patients safely. In this study, we prepared a gel comprising the thermosensitive poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) polymer and gemcitabine (GEM), which is currently used as the primary chemotherapy for PDAC and rapamycin (RAPA), a mammalian TOR (mTOR) inhibitor, to deliver the drug through intraperitoneal injection. We performed in vitro cytotoxicity experiments to verify the synergistic effects of the two drugs at different molar ratios and characterized the physicochemical properties of the GEM, RAPA, and GEM/RAPA-loaded thermosensitive PLGA-PEG-PLGA gels, hereafter referred to as (g(G), g(R), and g(GR)), respectively. The g(GR) comprising PLGA-PEG-PLGA polymer (25% w/v) and GEM and RAPA at a molar ratio of 11:1 showed synergism and was optimized. An in vitro cytotoxicity assay was performed by treating Panc-1-luc2 tumor spheroids with g(G), g(R), or g(GR). The g(GR) treatment group showed a 2.75-fold higher inhibition rate than the non-treated (NT) and vehicle-treated groups. Furthermore, in vivo drug release assay in mice by intraperitoneal injection of g(G), g(R), or g(GR) showed a more rapid release rate of GEM than RAPA, similar to the in vitro release pattern. The drugs in the gel were released faster in vivo than in vitro and degraded in 48 h. In addition, g(GR) showed the highest anti-tumor efficacy with no toxicity to mice. These results provide evidence for the safety and efficacy of g(GR) for intraperitoneal drug delivery. This study will assist in developing and clinically administering topical anti-cancer formulations.


Assuntos
Gencitabina , Neoplasias Pancreáticas , Camundongos , Animais , Sirolimo , Poliglactina 910 , Polietilenoglicóis/química , Neoplasias Pancreáticas/tratamento farmacológico , Hidrogéis/química , Linhagem Celular Tumoral , Mamíferos , Neoplasias Pancreáticas
7.
Pharmaceutics ; 15(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37376145

RESUMO

The conventional dosage form of Ethyol® (amifostine), a sterile lyophilized powder, involves reconstituting it with 9.7 mL of sterile 0.9% sodium chloride in accordance with the United States Pharmacopeia specifications for intravenous infusion. The purpose of this study was to develop inhalable microparticles of amifostine (AMF) and compare the physicochemical properties and inhalation efficiency of AMF microparticles prepared by different methods (jet milling and wet ball milling) and different solvents (methanol, ethanol, chloroform, and toluene). Inhalable microparticles of AMF dry powder were prepared using a wet ball-milling process with polar and non-polar solvents to improve their efficacy when delivered through the pulmonary route. The wet ball-milling process was performed as follows: AMF (10 g), zirconia balls (50 g), and solvent (20 mL) were mixed and placed in a cylindrical stainless-steel jar. Wet ball milling was performed at 400 rpm for 15 min. The physicochemical properties and aerodynamic characteristics of the prepared samples were evaluated. The physicochemical properties of wet-ball-milled microparticles (WBM-M and WBM-E) using polar solvents were confirmed. Aerodynamic characterization was not used to measure the % fine particle fraction (% FPF) value in the raw AMF. The % FPF value of JM was 26.9 ± 5.8%. The % FPF values of the wet-ball-milled microparticles WBM-M and WBM-E prepared using polar solvents were 34.5 ± 0.2% and 27.9 ± 0.7%, respectively; while the % FPF values of the wet-ball-milled microparticles WBM-C and WBM-T prepared using non-polar solvents were 45.5 ± 0.6% and 44.7 ± 0.3%, respectively. Using a non-polar solvent in the wet ball-milling process resulted in a more homogeneous and stable crystal form of the fine AMF powder than using a polar solvent.

8.
Asian J Pharm Sci ; 18(3): 100815, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37304227

RESUMO

Corrugated surface microparticles comprising levofloxacin (LEV), chitosan and organic acid were prepared using the 3-combo spray drying method. The amount and the boiling point of the organic acid affected the degree of roughness. In this study, we tried to improve the aerodynamic performance and increase aerosolization by corrugated surface microparticle for lung drug delivery efficiency as dry powder inhaler. HMP175 L20 prepared with 175 mmol propionic acid solution was corrugated more than HMF175 L20 prepared with 175 mmol formic acid solution. The ACI and PIV results showed a significant increase in aerodynamic performance of corrugated microparticles. The FPF value of HMP175 L20 was 41.3% ± 3.9% compared with 25.6% ± 7.7% of HMF175 L20. Corrugated microparticles also showed better aerosolization, decreased x-axial velocity, and variable angle. Rapid dissolution of drug formulations was observed in vivo. Low doses administered to the lungs achieved higher LEV concentrations in the lung fluid than high doses administered orally. Surface modification in the polymer-based formulation was achieved by controlling the evaporation rate and improving the inhalation efficiency of DPIs.

9.
Chem Pharm Bull (Tokyo) ; 71(9): 678-686, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37357388

RESUMO

Pirfenidone (PRF) is an anti-fibrotic agent that has been approved by the Food and Drug Administration (FDA) for the treatment of mild to moderate idiopathic pulmonary fibrosis. However, the current oral administration dosing regimen of PRF is complex and requires high doses. Patients are instructed to take PRF three times daily, with each dose consisting of up to three capsules or tablets (600 mg/d or 1.8 g/d of PRF) taken with food. To improve the dosing regimen, efforts are being made to develop an extended-release tablet with a zero-order release pattern. In this study, two types of extended-release matrix tablets were compared: non-channeled extended-release matrix tablets (NChMT) and channeled extended-release matrix tablets (ChMT). In vitro release tests, swelling and erosion index, rheology studies, and X-ray microcomputed tomography (XRCT), were conducted. The results indicated that ChMT maintained a zero-order release pattern with a constant release rate, while NChMT exhibited a decreased release rate in the latter half of the dissolution. ChMT exhibited accelerated swelling and erosion compared to other formulations, and this was made possible by the presence of channels within the tablet. These channels allowed for thorough wetting and swelling throughout the entire depth of the tablet. The formation of channels was confirmed through XRCT images. In conclusion, the presence of channels in ChMT tablets increased the rate of swelling and erosion, resulting in a zero-order release pattern. This development offers the potential to improve the dosage of PRF and reduce its associated side effects.


Assuntos
Preparações de Ação Retardada , Humanos , Microtomografia por Raio-X , Comprimidos , Solubilidade
10.
Pharmaceutics ; 15(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37111691

RESUMO

Ovarian cancer has a high mortality rate due to difficult detection at an early stage. It is necessary to develop a novel anticancer treatment that demonstrates improved efficacy while reducing toxicity. Here, using the freeze-drying method, micelles encapsulating paclitaxel (PTX) and sorafenib (SRF) with various polymers were prepared, and the optimal polymer (mPEG-b-PCL) was selected by measuring drug loading (%), encapsulation efficiency (%), particle size, polydispersity index, and zeta potential. The final formulation was selected based on a molar ratio (PTX:SRF = 1:2.3) with synergistic effects on two ovarian cancer cell lines (SKOV3-red-fluc, HeyA8). In the in vitro release assay, PTX/SRF micelles showed a slower release than PTX and SRF single micelles. In pharmacokinetic evaluation, PTX/SRF micelles showed improved bioavailability compared to PTX/SRF solution. In in vivo toxicity assays, no significant differences were observed in body weight between the micellar formulation and the control group. The anticancer effect of PTX/SRF combination therapy was improved compared to the use of a single drug. In the xenografted BALB/c mouse model, the tumor growth inhibition rate of PTX/SRF micelles was 90.44%. Accordingly, PTX/SRF micelles showed improved anticancer effects compared to single-drug therapy in ovarian cancer (SKOV3-red-fluc).

11.
Pharmaceutics ; 15(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36678783

RESUMO

Paclitaxel (PTX), etoposide (ETP), and rapamycin (RAPA) have different mechanisms, allowing multiple pathways to be targeted simultaneously, effectively treating various cancers. However, these drugs have a low hydrosolubility, limiting clinical applications. Therefore, we used pH-sensitive polymeric micelles to effectively control the drug release in cancer cells and to improve the water solubility of PTX, ETP, and RAPA. The synergistic effect of PTX, ETP, and RAPA was evaluated in gastric cancer, and the combination index values were evaluated. Thin-film hydration was used to prepare PTX/ETP/RAPA-loaded mPEG-pH-PCL micelles, and various physicochemical properties of these micelles were evaluated. In vitro cytotoxicity, pH-sensitivity, drug release profiles, in vivo pharmacokinetics, and biodistribution studies of PTX/ETP/RAPA-loaded mPEG-pH-PCL micelles were evaluated. In the pH-sensitivity evaluation, the size of the micelles increased more rapidly at a pH of 5.5 than at a pH of 7.4. The release rate of each drug increased with decreasing pH values in PTX/ETP/RAPA-loaded mPEG-pH-PCL micelles. In vitro and in vivo studies demonstrated that PTX/ETP/RAPA-loaded mPEG-pH-PCL micelles exhibit different drug release behaviors depending on the pH of the tumor and normal tissues and increased bioavailability and circulation time in the blood than solutions. Therefore, we propose that PTX/ETP/RAPA- loaded mPEG-pH-PCL micelles are advantageous for gastric cancer treatment in drug delivery systems.

12.
Int J Pharm ; 630: 122454, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36455755

RESUMO

Airborne particulate matter has been designated as a class 1 carcinogen by the World Health Organization. Nitrate is a toxic substance that accounts for a large proportion of particulate matter, and nitrate toxicity has long been reported. In this study, we aimed to optimize the adsorption and removal of particulate matter containing nitrate for effective elimination by the lungs. To this end, particles were designed to optimize the inhalation and removal efficiencies. These particles were prepared as chitosan-based particles containing N-acetylcysteine by using emulsion diffusion methods. Chitosan adsorbs nitrate, while N-acetylcysteine dissolves mucus. This removal mechanism has been found to occur in various in vitro models that mimic respiratory environments and in vivo models. In particular, the removal of exogenous substances, such as particulate matter, by the motility of respiratory cilia through mucolytic effect was investigated. This new approach for the adsorption and elimination of toxic substances entering the lungs represents an alternative defense mechanism against exposure to nitrates from air pollution.


Assuntos
Poluentes Atmosféricos , Quitosana , Material Particulado , Nitratos , Adsorção , Óxido Ferroso-Férrico , Acetilcisteína
13.
Drug Des Devel Ther ; 16: 4279-4289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561308

RESUMO

Purpose: This study aimed to ensure the convenience of administration and reproducibility of efficacy, regardless of the meal, by improving the solubility of rivaroxaban (RIV). Methods: RIV is a non-vitamin K antagonist oral anticoagulants that exhibits a coagulation effect by directly inhibiting coagulation factor Xa. However, RIV has a very low solubility; therefore, it must be administered with a meal at high doses. We used a drug- hydroxypropyl-beta-cyclodextrin (CD)-water-soluble polymer triple complex (R-C-P complex) to solubilize RIV. Using Minitab, we evaluated the effect of each factor on RIV solubility and developed an optimal R-C-P complex formulation. The amount of CD, amount of polymer, and polymer type were set as the independent variables X1, X2, and X3, respectively. RIV solubility (Y1) and dissolution rate for 45 min in pH 4.5 medium (Y2) and pH 1.2 medium (Y3) were set as response variables. Results: The most efficient RIV solubilization effect was obtained from the composition using CD and HPMC 2208, and physicochemical properties and dissolution parameters were analyzed. RIV in the R-C-P complex was present in an amorphous form and showed high solubility. Unlike commercial products, it showed a 100% dissolution rate. The R-C-P complex formulation secured high RIV solubility and 100% release regardless of pH. Conclusion: The results imply that high-dose RIV can be administered regardless of the meal, reducing the risk of changing the drug effect due to the patient's administration mistake.


Assuntos
Ciclodextrinas , Rivaroxabana , Humanos , Solubilidade , Reprodutibilidade dos Testes , Ciclodextrinas/química , Preparações Farmacêuticas , 2-Hidroxipropil-beta-Ciclodextrina , Polímeros
14.
J Control Release ; 352: 570-585, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36341935

RESUMO

Pirfenidone (PRF), the first FDA-approved drug to treat idiopathic pulmonary fibrosis (IPF) and formulated as an oral dosage form, has many side effects. To enhance the therapeutic effect, we discovered a high-load nanoemulsion using a novel deep eutectic solvent (DES) and developed an inhalation drug with improved bioavailability. The DES of PRF and N-acetylcysteine were discovered, and their physicochemical properties were evaluated in this study. The mechanism of DES formation was confirmed by FT-IR and 1H NMR and suggested to involve hydrogen bonding. The DES nanoemulsion in which the nano-sized droplets were dispersed is optimized by mixing the DES and distilled water in a ratio. The in vivo pharmacokinetic study showed that the pulmonary route of administration is superior to that of the oral route, and the DES nanoemulsion is superior to that of the PRF solution in achieving better bioavailability and lung distribution. The therapeutic effect of PRF for IPF could be confirmed through in vivo pharmacodynamics studies, including lung function assessment, enzyme-linked immunosorbent assay, histology, and micro-computed tomography using the bleomycin-induced IPF rat model. In addition, the pulmonary route administration of PRF is advantageous in reducing the toxicity risk.


Assuntos
Fibrose Pulmonar Idiopática , Ratos , Animais , Fibrose Pulmonar Idiopática/tratamento farmacológico , Solventes Eutéticos Profundos , Espectroscopia de Infravermelho com Transformada de Fourier , Microtomografia por Raio-X , Piridonas/uso terapêutico
15.
Drug Deliv ; 29(1): 3384-3396, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36415157

RESUMO

Pirfenidone (PRF) is the first FDA-approved API in the treatment of idiopathic pulmonary fibrosis (IPF). However, PRF induces serious side effects, such as photophobia and gastrointestinal disorder. PRF inhalation can be expected with a lower effective dose and reduced side effects. In this study, PRF was prepared as inhalable co-spray-dried particles for dry powder inhalation. Mannitol, L-leucine (Leu), and NaCl were used as a stabilizer. The kinds and ratios of stabilizers affecting the physicochemical properties of particles were analyzed, including particle size and surface composition, because of the surface enrichment properties of Leu, the most effective stabilizer. The co-spray-dried PRF and Leu microparticle (SD-PL1:1) have the smallest size and highest aerosol performance. The bioavailability was confirmed by in vivo pharmacokinetics (PK) studies. In addition, in vivo pharmacodynamics (PD) experiments were conducted using a bleomycin-induced IPF rat model. In vivo PK experiments demonstrated that pulmonary administration of SD-PL1:1 was 4 times more effective than the oral route. Similar to the PK results, the therapeutic effect was improved when SD-PL1:1 was administered via the pulmonary route compared to the oral route.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Piridonas , Ratos , Animais , Piridonas/farmacologia , Disponibilidade Biológica , Bleomicina , Excipientes
16.
Int J Nanomedicine ; 17: 3405-3419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35945926

RESUMO

Introduction: Dry powder inhalations are an attractive pharmaceutical dosage form. They are environmentally friendly, portable, and physicochemical stable compared to other inhalation forms like pressurized metered-dose inhalers and nebulizers. Sufficient drug deposition of DPIs into the deep lung is required to enhance the therapeutic activity. Nanoscale surface roughness in microparticles could improve aerosolization and aerodynamic performance. This study aimed to prepare microspheres with nanoscale dimples and confirm the effect of roughness on inhalation efficiency. Methods: The dimpled-surface on microspheres (MSs) was achieved by oil in water (O/W) emulsion-solvent evaporation by controlling the stirring rate. The physicochemical properties of MSs were characterized. Also, in vitro aerodynamic performance of MSs was evaluated by particle image velocimetry and computational fluid dynamics. Results: The particle image velocimetry results showed that dimpled-surface MSs had better aerosolization, about 20% decreased X-axial velocity, and a variable angle, which could improve the aerodynamic performance. Furthermore, it was confirmed that the dimpled surface of MSs could cause movement away from the bronchial surface, which helps the MSs travel into the deep lung using computational fluid dynamics. Conclusion: The dimpled-surface MSs showed a higher fine particle fraction value compared to smooth-surface MSs in the Andersen Cascade Impactor, and surface roughness like dimples on microspheres could improve aerosolization and lung deposition.


Assuntos
Budesonida , Inaladores de Pó Seco , Administração por Inalação , Aerossóis/química , Microesferas , Tamanho da Partícula , Pós/química
17.
Pharm Biol ; 60(1): 1341-1348, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35840545

RESUMO

CONTEXT: The sleep-promoting activity of Nelumbo nucifera Gaertn. (Nymphaeaceae) alkaloids in leaves or seeds are well known. However, the sleep-promoting activity of the lotus rhizome (LE), which is used mainly as food, has not yet been evaluated. OBJECTIVE: We investigated the sleep-promoting activity of LE water extract. MATERIALS AND METHODS: Institute of Cancer Research (ICR) mice (n = 8) were subject to a pentobarbital-induced sleep test to assess changes in sleep latency and duration following the administration of LE (80-150 mg/kg). In addition, electroencephalography analysis was performed to determine the sleep quality after LE treatment as well as the sleep recovery effect of LE using a caffeine-induced insomnia SD rat model. Real-time PCR and western blot analysis were performed to investigate the expression of neurotransmitter receptors, and the GABAA receptor antagonists were used for receptor binding analysis. RESULTS: An oral administration of 150 mg/kg LE significantly increased sleep duration by 24% compared to the control. Furthermore, LE increased nonrapid eye movement (NREM) sleep by increasing theta and delta powers. In the insomnia model, LE increased sleep time by increasing NREM sleep. Moreover, treatment with picrotoxin and flumazenil decreased the sleep time by 33% and 23%, respectively, indicating an involvement of the GABAA receptor in the sleep-enhancing activity of LE. The expression of GABAA receptors and the concentration of GABA in the brain were increased by LE. DISCUSSION AND CONCLUSIONS: The results suggest that the sleep-promoting activity of LE was via the GABAA receptor. Collectively, these data show that LE may promote sleep.


Assuntos
Lotus , Nelumbo , Extratos Vegetais , Receptores de GABA-A , Distúrbios do Início e da Manutenção do Sono , Animais , Camundongos , Nelumbo/metabolismo , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Rizoma/química , Sono/efeitos dos fármacos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Água/farmacologia , Ácido gama-Aminobutírico/farmacologia
18.
Pharmaceutics ; 14(7)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35890304

RESUMO

This study aimed to prepare mucus-penetrating inhalable microparticles for dry powder inhalers and to evaluate their applicability in an asthma-induced rat model. Microparticles were prepared from water solutions containing tiotropium bromide, L-leucine, and sodium glycocholate (NaGc) as permeation enhancers using the spray drying method. Four formulations (SDL1, SDL2, SDL3, and SDL4) were used, depending on the various NaGc concentrations. Tiotropium microparticles were characterized by standard methods. Additionally, an asthma-induced rat model was used to confirm the effects of the formulations on lung function. Tiotropium microparticles with NaGc resulted in formulations with a more corrugated morphology and smaller particle size distribution than those without NaGc. SDL 1 had a rough surface with irregular morphology, and SDL 2, 3, and 4 had a corrugated morphology. All SDL formulations had an aerodynamic size of <3 µm. The microparticles with a corrugated morphology aerosolized better than SDL1 microparticles. The apparent permeability coefficient (Papp) values of SDL3 and SDL4 were significantly higher than those for raw tiotropium. In an in vivo study using an asthma-induced rat model, the specific airway resistance (Sraw), airway wall thickness, and mean alveolus size recovered to those of the negative control group in the SDL4 formulation.

19.
Pharmaceutics ; 14(7)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35890307

RESUMO

Esomeprazole magnesium (EMP) is a proton pump inhibitor (PPI) that reduces acid secretion. EMP has a short plasma half-life (approximately 1.3 h); hence, nocturnal acid breakthrough (NAB) frequently occurs, disturbing the patient's nighttime comfort and sleep. We aimed to develop a novel esomeprazole magnesium-loaded dual-release mini-tablet polycap (DR polycap) with a prolonged onset time and improved bioavailability to prevent NAB. The formulation of the EPM mini-tablet core resulted in rapid drug release. The core was coated with an inner coating and an Eudragit® L30D-55 aqueous dispersion coating to prepare the first-release mini-tablet. In addition, the core was coated with an inner coating and an aqueous dispersion of Eudragit® S100 and Eudragit® L100 coating to prepare the second-release mini-tablet. Each mini-tablet type was characterized using an in vitro dissolution test and microscopic examination. After testing, 10 of each mini-tablets were placed together in hard capsules to form DR polycaps. The combination of mini-tablets was optimized via in vitro release testing and in vivo pharmacokinetic studies. The AUC0-24h of the DR polycap was similar to that of a comparable commercial product (Nexium®); Cmax was lower by approximately 50%, and Tmax was extended by approximately 1.7-fold. In conclusion, DR polycap is an alternative to commercial products with improved NAB and dosing compliance because of its dual-release characteristics.

20.
Chemosphere ; 304: 135268, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35690173

RESUMO

Slow-releasing precipitating tablets (SRPTs) and slow-releasing floating tablets (SRFTs) were formulated to release fumarate as a carbon source (CS) and/or electron donor (ED) in an in situ biological heterotrophic denitrification system. These tablets were prepared using pharmaceutical manufacturing. Soil column tests were conducted to evaluate nitrate denitrification efficacy, microbial population changes, and mass balance of fumarate and potential electron acceptors. Significant and simultaneous consumption of both fumarate and nitrate, and the production and consumption of nitrite were observed in both SRPT-treated and SRFT-treated soil columns. These results suggest that SRPT and SRFT releasing fumarate, induce heterotrophic biological denitrification. In the SRPT- and SRFT-treated columns, 65% and 73% of fumarate were associated with heterotrophic denitrification, respectively. Particularly, surplus citric acid, originally designed to serve as a floating agent, was utilized for 36% and 28% for SRFT flotation and denitrification, respectively. The results of 16s RNA analyses revealed that a bacterium that shared 99% 16s rRNA sequence similarity with those of Azoarcus sp. AN9, and Pseudogulbenkiania sp. NH8B, a facultative heterotrophic denitrifier, was detected in the column effluent. This study confirms that SRPT and SRFT can effectively operate long-term in situ biological denitrification processes, because it is possible to supply detailed CS and/or ED uniformly by applying both SRPT and SRFT in the well.


Assuntos
Água Subterrânea , Nitratos , Carbono , Desnitrificação , Fumaratos , Processos Heterotróficos , Nitrogênio , Compostos Orgânicos , RNA Ribossômico 16S , Solo , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA