Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
PLoS One ; 19(6): e0305230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38913648

RESUMO

Obstructive sleep apnea (OSA) is characterized by cyclic normoxic and hypoxic conditions (intermittent hypoxia, IH) induced by the repeated closure of the upper-airway respiratory tract. As a pathomechanism of OSA, IH results in various comorbidities via chronic inflammation and related pathways. However, the role of other inflammatory cells, such as lymphocytes, has not been well-explored. This study aimed to examine the effects of IH on the distribution and balance of T cell subsets and other related cytokines, and mechanisms in the immune system. We modified OSA mouse model (male C57BL/6N male) using our customized chamber that controls specific sleep and oxygenic cycles. To induce hypoxia, the IH group was repeatedly exposed to 5% O2 and 21% O2 lasting for 120 s each for 7 h daily for 4 weeks. Mice were then subjected to a recovery period of 4 weeks, in which IH stimulation was ceased. T cells and related cytokines were analyzed using flow cytometry and immunohistochemistry. Compared with the control group, the IH group had significantly lower levels of CD4+CD25+Foxp3+ regulatory T cells but higher levels of Th 17, IL-4, HIF-1, and inflammatory cytokines. After the recovery period, these altered changes in the immune cells were recovered, and we found no significant difference in their levels between the control and recovery groups. This study revealed that the Th17/Treg ratio is increased by intermittent hypoxia, and this imbalance can explain immune-related diseases, including recently reported allergies, autoimmune, and even cancer diseases, arising from OSA.


Assuntos
Modelos Animais de Doenças , Hipóxia , Camundongos Endogâmicos C57BL , Apneia Obstrutiva do Sono , Linfócitos T Reguladores , Células Th17 , Animais , Apneia Obstrutiva do Sono/imunologia , Linfócitos T Reguladores/imunologia , Masculino , Hipóxia/imunologia , Hipóxia/complicações , Células Th17/imunologia , Camundongos , Citocinas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-4/metabolismo
3.
Sensors (Basel) ; 24(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38676020

RESUMO

The objective of content-based image retrieval (CBIR) is to locate samples from a database that are akin to a query, relying on the content embedded within the images. A contemporary strategy involves calculating the similarity between compact vectors by encoding both the query and the database images as global descriptors. In this work, we propose an image retrieval method by using hierarchical K-means clustering to efficiently organize the image descriptors within the database, which aims to optimize the subsequent retrieval process. Then, we compute the similarity between the descriptor set within the leaf nodes and the query descriptor to rank them accordingly. Three tree search algorithms are presented to enable a trade-off between search accuracy and speed that allows for substantial gains at the expense of a slightly reduced retrieval accuracy. Our proposed method demonstrates enhancement in image retrieval speed when applied to the CLIP-based model, UNICOM, designed for category-level retrieval, as well as the CNN-based R-GeM model, tailored for particular object retrieval by validating its effectiveness across various domains and backbones. We achieve an 18-times speed improvement while preserving over 99% accuracy when applied to the In-Shop dataset, the largest dataset in the experiments.

4.
Nanomicro Lett ; 16(1): 33, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015283

RESUMO

Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications, including fuel cells, chemical conversion, and batteries. Nanocatalysts demonstrate high activity by expanding the number of active sites, but they also intensify deactivation issues, such as agglomeration and poisoning, simultaneously. Exsolution for bottom-up synthesis of supported nanoparticles has emerged as a breakthrough technique to overcome limitations associated with conventional nanomaterials. Nanoparticles are uniformly exsolved from perovskite oxide supports and socketed into the oxide support by a one-step reduction process. Their uniformity and stability, resulting from the socketed structure, play a crucial role in the development of novel nanocatalysts. Recently, tremendous research efforts have been dedicated to further controlling exsolution particles. To effectively address exsolution at a more precise level, understanding the underlying mechanism is essential. This review presents a comprehensive overview of the exsolution mechanism, with a focus on its driving force, processes, properties, and synergetic strategies, as well as new pathways for optimizing nanocatalysts in diverse applications.

5.
Anal Chem ; 95(21): 8223-8231, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37194568

RESUMO

Mass spectrometry-based glycome analysis is a viable strategy for the compositional and functional exploration of glycosylation. However, the lack of generic tools for high-throughput and reliable glycan spectral interpretation largely hampers the broad usability of glycomic research. Here, we developed a generic and reliable glycomic tool, GlycoNote, for comprehensive and precise glycome analysis. GlycoNote supports interpretation of tandem-mass spectrometry glycomic data from any sample source, uses a novel target-decoy method with iterative decoy searching for highly reliable result output, and embeds an open-search component analysis mode for heterogeneity analysis of monosaccharides and modifications. We tested GlycoNote on several different large-scale glycomic datasets, including human milk oligosaccharides, N- and O-glycome from human cell lines, plant polysaccharides, and atypical glycans from Caenorhabditis elegans, demonstrating its high capacity for glycome analysis. An application of GlycoNote to the analysis of labeled and derived glycans further demonstrates its broad usability in glycomic studies. By enabling generic characterization of various glycan types and elucidation of component heterogeneity in glycomic samples, the freely available GlycoNote is a promising tool for facilitating glycomics in glycobiology research.


Assuntos
Glicômica , Polissacarídeos/química , Glicômica/métodos , Humanos , Espectrometria de Massas em Tandem
6.
Cell Prolif ; 55(10): e13288, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35768997

RESUMO

OBJECTIVE: As a component of Endosomal Sorting Complex Required for Transport (ESCRT) complex I, the tumor susceptibility gene 101 (Tsg101) carries out multiple functions. In this work, we report that oocyte-specific deletion of tumor susceptibility gene 101 (Tsg101) leads to age-dependent oocyte demise in mice. MATERIALS AND METHOD: Tsg101 floxed mice (Tsg101f/f ) were bred with Zp3cre transgenic mice to examine oocyte-specific roles of Tsg101. Multiple cellular and molecular biological approaches were taken to examine what leads to oocyte demise in the absence of Tsg101. RESULTS: The death of oocytes from Zp3cre /Tsg101f/f (Tsg101d/d thereafter) mice showed a strong correlation with sexual maturation, as gonadotropin-releasing hormone antagonist injections improved the survival rate of oocytes from 5-week-old Tsg101d/d mice. Maturation of oocytes from prepubertal Tsg101d/d mice proceeded normally, but was largely abnormal in oocytes from peripubertal Tsg101d/d mice, showing shrinkage or rupture. Endolysosomal structures in oocytes from peripubertal Tsg101d/d mice showed abnormalities, with aberrant patterns of early and late endosomal markers and a high accumulation of lysosomes. Dying oocytes showed plasma membrane blebs and leakage. Blockage of endocytosis in oocytes at 4°C prevented cytoplasmic shrinkage of oocytes from Tsg101d/d mice until 9 h. The depletion of tsg-101 in Caenorhabditis elegans increased the permeability of oocytes and embryos, suggesting a conserved role of Tsg101 in maintaining membrane integrity. CONCLUSIONS: Collectively, Tsg101 plays a dual role in maintaining the integrity of membranous structures, which is influenced by age in mouse oocytes.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Oócitos , Animais , Proteínas de Ligação a DNA , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Hormônio Liberador de Gonadotropina , Camundongos , Camundongos Transgênicos , Fatores de Transcrição
8.
Clin Immunol ; 230: 108825, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403816

RESUMO

We have recently introduced multiple reaction monitoring (MRM) mass spectrometry as a novel tool for glycan biomarker research and discovery. Herein, we employ this technique to characterize the site-specific glycan alterations associated with primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC). Glycopeptides associated with disease severity were also identified. Multinomial regression modelling was employed to construct and validate multi-analyte diagnostic models capable of accurately distinguishing PBC, PSC, and healthy controls from one another (AUC = 0.93 ± 0.03). Finally, to investigate how disease-relevant environmental factors can influence glycosylation, we characterized the ability of bile acids known to be differentially expressed in PBC to alter glycosylation. We hypothesize that this could be a mechanism by which altered self-antigens are generated and become targets for immune attack. This work demonstrates the utility of the MRM method to identify diagnostic site-specific glycan classifiers capable of distinguishing even related autoimmune diseases from one another.


Assuntos
Autoimunidade , Colangite Esclerosante/imunologia , Cirrose Hepática Biliar/imunologia , Polissacarídeos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/imunologia , Biomarcadores/sangue , Estudos de Casos e Controles , Colangite Esclerosante/sangue , Colangite Esclerosante/diagnóstico , Diagnóstico Diferencial , Glicômica/métodos , Glicopeptídeos/sangue , Glicopeptídeos/imunologia , Glicosilação , Humanos , Cirrose Hepática Biliar/sangue , Cirrose Hepática Biliar/diagnóstico , Polissacarídeos/sangue , Espectrometria de Massas por Ionização por Electrospray/métodos
9.
Cryobiology ; 99: 140-148, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33242477

RESUMO

Cryopreserved oocytes are inevitably exposed to cold stress, which negatively affects the cellular aspects of the oocytes. Lipidomic analysis of the oocytes reveals quantitative changes in lipid classes under conditions of cold stress, leading to potential freezing-vulnerability. We had previously shown that specific phospholipids are significantly downregulated in vitrified-warmed mouse oocytes compared to those in fresh oocytes. In this study, we examined whether supplementation of polyethylene glycol 8000 (PEG 8000) during vitrification influences the lipidome of the oocytes. We used liquid chromatography with tandem mass spectrometry (LC-MS/MS) to study the alteration in the lipidome in three groups of mouse oocytes: fresh, vitrified-warmed, and vitrified with PEG 8000-warmed during vitrification. In these groups, we targeted to analyze 21 lipid classes. We profiled 132 lipid species in the oocytes and statistical analyses revealed lipid classes that were up- or downregulated in these groups. Overall, our data revealed that several classes of lipids were affected during vitrification, and that oocytes vitrified with PEG 8000 to some extent alleviated the levels of changes in phospholipid and sphingolipid contents during vitrification. These results suggest that phospholipids and sphingolipids are influenced by PEG 8000 during vitrification and that PEG 8000 can be considered as a potential candidate for preserving membrane integrity during oocyte cryopreservation.


Assuntos
Lipidômica , Vitrificação , Animais , Cromatografia Líquida , Criopreservação/métodos , Suplementos Nutricionais , Camundongos , Oócitos , Polietilenoglicóis , Espectrometria de Massas em Tandem
10.
Sci Rep ; 10(1): 21377, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262440

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Sci Rep ; 10(1): 17505, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060657

RESUMO

Alterations in the human glycome have been associated with cancer and autoimmunity. Thus, constructing a site-specific map of the human glycome for biomarker research and discovery has been a highly sought-after objective. However, due to analytical barriers, comprehensive site-specific glycoprofiling is difficult to perform. To develop a platform to detect easily quantifiable, site-specific, disease-associated glycan alterations for clinical applications, we have adapted the multiple reaction monitoring mass spectrometry method for use in glycan biomarker research. The adaptations allow for highly precise site-specific glycan monitoring with minimum sample prep. Using this technique, we successfully mapped out the relative abundances of the most common 159 glycopeptides in the plasma of 97 healthy volunteers. This plasma glycome map revealed 796 significant (FDR < 0.05) site-specific inter-protein and intra-protein glycan associations, of which the vast majority were previously unknown. Since age and gender are relevant covariants in biomarker research, these variables were also characterized. 13 glycopeptides were found to be associated with gender and 41 to be associated with age. Using just five age-associated glycopeptides, a highly accurate age prediction model was constructed and validated (r2 = 0.62 ± 0.12). The human plasma site-specific glycan map described herein has utility in applications ranging from glycan biomarker research and discovery to the development of novel glycan-altering interventions.


Assuntos
Fatores Etários , Biomarcadores/sangue , Polissacarídeos/sangue , Fatores Sexuais , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Sanguíneas , Feminino , Glicômica , Glicopeptídeos/sangue , Glicosilação , Voluntários Saudáveis , Humanos , Imunoglobulina G/sangue , Funções Verossimilhança , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas por Ionização por Electrospray , Adulto Jovem
12.
Nat Commun ; 11(1): 3963, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770134

RESUMO

Polysaccharides are the most abundant biomolecules in nature, but are the least understood in terms of their chemical structures and biological functions. Polysaccharides cannot be simply sequenced because they are often highly branched and lack a uniform structure. Furthermore, large polymeric structures cannot be directly analyzed by mass spectrometry techniques, a problem that has been solved for polynucleotides and proteins. While restriction enzymes have advanced genomic analysis, and trypsin has advanced proteomic analysis, there has been no equivalent enzyme for universal polysaccharide digestion. We describe the development and application of a chemical method for producing oligosaccharides from polysaccharides. The released oligosaccharides are characterized by advanced liquid chromatography-mass spectrometry (LC-MS) methods with high sensitivity, accuracy and throughput. The technique is first used to identify polysaccharides by oligosaccharide fingerprinting. Next, the polysaccharide compositions of food and feces are determined, further illustrating the utility of technique in food and clinical studies.


Assuntos
Oligossacarídeos/química , Polissacarídeos/metabolismo , Bactérias/metabolismo , Galactose/análogos & derivados , Glucanos/química , Glucanos/metabolismo , Humanos , Lactente , Mananas/química , Mananas/metabolismo , Oxirredução , Polimerização , Fatores de Tempo , Xilanos/química , Xilanos/metabolismo
13.
Reprod Biol Endocrinol ; 18(1): 37, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366306

RESUMO

BACKGROUND: We had previously demonstrated that vitrification reduces the levels of certain phospholipid classes, and that oocytes from aged mice show a similar lipidome alteration, even without vitrification. In the current investigation, we examined if vitrification-warming of mouse oocytes from young and aged mice causes any changes in molecular aspects of lipid-associated features. METHODS: Metaphase II (MII) stage oocytes were harvested from young (10-14-week-old) and aged (45-54-week-old) mice by a superovulation regime with PMSG followed by hCG. We examined the status of the intracellular lipid pool and the integrity of the plasma membrane by staining oocytes with BODIPY 500/510 and CellMask live dyes. Expression of lipid uptake- and necroptosis-associated genes was assessed by quantitative PCR analyses, in oocytes from young and old mice, before and after vitrification. Localization patterns of two crucial necroptosis proteins, phosphorylated MLKL (pMLKL) and phosphorylated RIPK1 (pRIPK1) were examined in mouse oocytes by immunofluorescence staining. Necrostain-1 (Nec1), an inhibitor of RIPK1, was used to examine if RIPK1 activity is required to maintain oocyte quality during vitrification. RESULTS: We confirmed that vitrified-warmed oocytes from aged mice showed noticeable decrease in both CellMask and BODIPY 500/510 dyes. Among the lipid uptake-associated genes, Cd36 expression was higher in oocytes from aged mice. Necroptosis is a type of programmed cell death that involves damage to the plasma membrane, eventually resulting in cell rupture. The expression of necroptosis-associated genes did not significantly differ among groups. We observed that localization patterns of pMLKL and pRIPK1 were unique in mouse oocytes, showing association with microtubule organizing centers (MTOCs) and spindle poles. pMLKL was also localized on kinetochores of MII chromosomes. Oocytes treated with Nec1 during vitrification showed a decreased survival rate, indicating the importance of RIPK1 activity in oocyte vitrification. CONCLUSIONS: We report that oocytes from aged mice show differential expression of CD36, which suggests that CD36-mediated lipid uptake may be influenced by age. We also show for the first time that pMLKL and pRIPK1 exhibit unique localization pattern in mouse oocytes and this may suggest role(s) for these factors in non-necroptosis-associated cellular processes.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Necroptose/fisiologia , Oócitos/metabolismo , Fatores Etários , Animais , Células Cultivadas , Criopreservação , Feminino , Camundongos , Superovulação , Vitrificação
14.
J Nanosci Nanotechnol ; 20(7): 4364-4367, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31968475

RESUMO

Zinc oxide (ZnO) nanoparticles layers are used as a substitute for organic electron transport layer due to high electron mobility, higher thermal stability and less sensitivity to the oxygen/moisture. In this study, we investigated the electron injection properties of ZnO nanoparticles in QLED compared with TPBi commonly used as injection layer in OLEDs. The expected electron injection barrier from energy diagram is similar in both devices, but the current density of the ZnO injection layer was slightly high compared with the TPBi injection layer. The current efficiency of ZnO and TPBi devices were 5.21 cd/A and 2.24 cd/A, respectively. The current efficiency of TPBi device is below half of ZnO device. We found that the electron-hole recombination occurs not only in the QD but also in the poly-TPD for TPBi device.

15.
J Nanosci Nanotechnol ; 20(7): 4454-4457, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31968495

RESUMO

Quantum dot light-emitting diodes (QLEDs) have attracted considerable attention owing to the narrow emission spectra, wide color gamut, high quantum yield and size-controlled emission wavelength. Zinc oxide nanoparticles have been widely used as an electron transport layer (ETL) in QLEDs due to their excellent electrical properties. In this study, we compared the efficiency of QLEDs with organic and zinc oxide ETLs in viewpoint of the charge balance. The QLEDs were constructed using ZnO nanoparticles with an average particle size of 3 nm or 3TPYMB as the ETL materials. CdSe/ZnS quantum dots and poly-TPD were used as a light-emitting elements and hole transporting material, respectively. The QLED with 3TPYMB ETL exhibited current efficiency of 7.71 cd/A, while the efficiency of the QLED using ZnO nanoparticles was significantly improved to 38.76 cd/A. Such a substantial improvement of emission efficiency in the QLEDs with ZnO ETL was attributed to the much better charge balance by the ZnO.

16.
Chem Sci ; 10(29): 6992-7002, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31588266

RESUMO

Cell membrane protein glycosylation is dependent on the metabolic state of the cell as well as exogenous nutrients available. Although the metabolism and interconversion of monosaccharides have been well-studied, their incorporation into cell surface glycans and their corresponding glycoproteins remains relatively unknown. In this study, we developed a method to investigate quantitatively the incorporation pathways of dietary saccharides into specific glycans and glycoproteins on the cell membrane by treating intestinal Caco-2 and hepatic KKU-M213 cells with 13C-labeled monosaccharides and characterizing the resulting cell surface glycans and glycopeptides by LC-MS/MS. Time-course studies using uniformly labeled glucose revealed that the rate of incorporation was both glycan-specific and protein-dependent. Comparative studies using different dietary saccharides and multiple cell lines revealed the variance of monosaccharide utilization and interconversion in different tissues and organisms. The robust isotope-labeling and glycan profiling methods can provide a useful tool for differentiating glycosylation pathways and enhance the understanding of how dietary sugar intake affects health.

17.
Mol Oncol ; 13(2): 338-357, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444036

RESUMO

O-GlcNAcylation is a key post-translational modification that modifies the functions of proteins. Associations between O-GlcNAcylation, shorter survival of cholangiocarcinoma (CCA) patients, and increased migration/invasion of CCA cell lines have been reported. However, the specific O-GlcNAcylated proteins (OGPs) that participate in promotion of CCA progression are poorly understood. OGPs were isolated from human CCA cell lines, KKU-213 and KKU-214, using a click chemistry-based enzymatic labeling system, identified using LC-MS/MS, and searched against an OGP database. From the proteomic analysis, a total of 21 OGPs related to cancer progression were identified, of which 12 have not been previously reported. Among these, hnRNP-K, a multifaceted RNA- and DNA-binding protein known as a pre-mRNA-binding protein, was one of the most abundantly expressed, suggesting its involvement in CCA progression. O-GlcNAcylation of hnRNP-K was further verified by anti-OGP/anti-hnRNP-K immunoprecipitations and sWGA pull-down assays. The perpetuation of CCA by hnRNP-K was evaluated using siRNA, which revealed modulation of cyclin D1, XIAP, EMT markers, and MMP2 and MMP7 expression. In native CCA cells, hnRNP-K was primarily localized in the nucleus; however, when O-GlcNAcylation was suppressed, hnRNP-K was retained in the cytoplasm. These data signify an association between nuclear accumulation of hnRNP-K and the migratory capabilities of CCA cells. In human CCA tissues, expression of nuclear hnRNP-K was positively correlated with high O-GlcNAcylation levels, metastatic stage, and shorter survival of CCA patients. This study demonstrates the significance of O-GlcNAcylation on the nuclear translocation of hnRNP-K and its impact on the progression of CCA.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Núcleo Celular/metabolismo , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Progressão da Doença , Glucosamina/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Glicosilação , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Invasividade Neoplásica , Metástase Neoplásica , Transporte Proteico , Resultado do Tratamento
18.
Stem Cell Reports ; 11(2): 325-333, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29983388

RESUMO

Since hundreds of clinical trials are investigating the use of multipotent stromal cells (MSCs) for therapeutic purposes, effective delivery of the cells to target tissues is critical. We have found an unexplored mechanism, by which basic fibroblast growth factor (FGF2) induces expression of fucosyltransferase 8 (FUT8) to increase core fucosylations of N-linked glycans of membrane-associated proteins, including several integrin subunits. Gain- and loss-of-function experiments show that FUT8 is both necessary and sufficient to induce migration of MSCs. Silencing FUT8 also affects migration of MSCs in zebrafish embryos and a murine bone fracture model. Finally, we use in silico modeling to show that core fucosylations restrict the degrees of freedom of glycans on the integrin's surface, hence stabilizing glycans on a specific position. Altogether, we show a mechanism whereby FGF2 promotes migration of MSCs by modifying N-glycans. This work may help improve delivery of MSCs in therapeutic settings.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Integrinas/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Polissacarídeos/metabolismo , Animais , Movimento Celular/genética , Fator 2 de Crescimento de Fibroblastos/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicosilação , Humanos , Integrinas/química , Camundongos , Modelos Moleculares , Conformação Molecular , Polissacarídeos/química , Relação Estrutura-Atividade
19.
Sci Rep ; 8(1): 10993, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030471

RESUMO

Glycosphingolipids (GSLs) are found in cellular membranes of most organisms and play important roles in cell-cell recognition, signaling, growth, and adhesion, among others. A method based on nanoflow high performance liquid chromatography-chip-quadrupole-time-of-flight mass spectrometry (nanoHPLC Chip-Q-TOF MS) was applied towards identifying and quantifying intact GSLs from a variety of samples, including cultured cell lines and animal tissue. The method provides the composition and sequence of the glycan, as well as variations in the ceramide portion of the GSL. It was used to profile the changes in the glycolipidome of Caco-2 cells as they undergo differentiation. A total of 226 unique GSLs were found among Caco-2 samples from five differentiation time-points. The method provided a comprehensive glycolipidomic profile of a cell during differentiation to yield the dynamic variation of intact GSL structures.


Assuntos
Diferenciação Celular , Membrana Celular/química , Glicoesfingolipídeos/análise , Metabolismo dos Lipídeos , Polissacarídeos/metabolismo , Animais , Células CACO-2 , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas , Fatores de Tempo
20.
Oncogene ; 37(42): 5648-5665, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29915392

RESUMO

The leading cause of death in cancer patients is metastasis, for which an effective treatment is still necessary. During metastasis, cancer cells aberrantly express several glycans that are correlated with poor patient outcome. This study was aimed toward exploring the effects of O-GlcNAcylation on membranous N-glycans that are associated with the progression of cholangiocarcinoma (CCA). Global O-GlcNAcylation in CCA cells was depleted using specific siRNA against O-GlcNAc transferase (OGT), which transfers GlcNAc to the acceptor proteins. Using an HPLC-Chip/Time-of-Flight (Chip/TOF) MS system, the N-glycans associated with O-GlcNAcylation were identified by comparing the membranous N-glycans of siOGT-treated cells with those of scramble siRNA-treated cells. In parallel, the membranous N-glycans of the parental cells (KKU-213 and KKU-214) were compared with those of the highly metastatic cells (KKU-213L5 and KKU-214L5). Together, these data revealed that high mannose (Hex9HexNAc2) and biantennary complex (Hex5HexNAc4Fuc1NeuAc1) N-linked glycans correlated positively with metastasis. We subsequently demonstrate that suppression of O-GlcNAcylation decreased the expression of these two N-glycans, suggesting that O-GlcNAcylation mediates their levels in CCA. In addition, the ability of highly metastatic cells to migrate and invade was reduced by the presence of Pisum Sativum Agglutinin (PSA), a mannose-specific lectin, further indicating the association of high mannose type N-glycans with CCA metastasis. The molecular mechanism of O-GlcNAc-mediated progression of CCA was shown to proceed via a series of signaling events, involving the activation of Akt/Erk (i), an increase in FOXO3 phosphorylation (ii), which results in the reduction of MAN1A1 expression (iii) and thus the accumulation of Hex9HexNAc2 N-glycans (iv). This study demonstrates for the first time the association between O-GlcNAcylation, high mannose type N-glycans, and the progression of CCA metastasis, suggesting a novel therapeutic target for treatment of metastatic CCA.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Proteína Forkhead Box O3/metabolismo , Proteínas de Membrana/metabolismo , Invasividade Neoplásica/patologia , Proteínas Nucleares/metabolismo , Acilação , Neoplasias dos Ductos Biliares/metabolismo , Linhagem Celular Tumoral , Colangiocarcinoma/metabolismo , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Polissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA