Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cytokine ; 110: 350-356, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29656957

RESUMO

Poly-γ-d-glutamic acid (PGA) of anthrax is an important pathogenic factor due to its anti-phagocytic activity. Additionally, PGA has the ability to activate mouse macrophages for the secretion of cytokines through Toll-like receptor (TLR) 2. Peptidoglycan (PGN), a major bacterial cell-wall component, induces inflammatory responses in the host. We assessed whether PGA can induce maturation and cytokine expression in immature mouse dendritic cells (DCs) in the existence of muramyl dipeptide (MDP), the minimum motif of PGN with immunostimulatory activity. Stimulation of immature DCs with PGA or MDP alone augmented expression of costimulatory molecules and MHC class II proteins, which are all cell surface markers indicative of maturation. The observed effects were further enhanced by costimulation of PGA and MDP. PGA alone was sufficient to induce expression of TNF-α, IL-6, MCP-1, and MIP1-α, whereas MDP alone did not under the same conditions. Treatment with MDP enhanced PGA-induced expression of the tested inflammatory mediators; however, the synergistic effect found for PGA and MDP was not observed in TLR2- or nucleotide-binding oligomerization domain (NOD) 2-knockout DCs. Additionally, MDP augmented PGA-induced MAP kinases and NF-κB activation, which is crucial for expression of cytokines. Furthermore, MAP kinase and NF-κB inhibitors attenuated MDP enhancement of PGA-induced cytokine production. In addition, co-culture of splenocytes and PGA/MDP-matured DCs induced higher expression of IL-2 and IFN-γ compared to that of splenocytes and PGA-matured DCs. Collectively, our results suggest that PGA and MDP cooperatively induce inflammatory responses in mouse DCs through TLR2 and NOD2 via MAP kinase and NF-κB pathways, subsequently leading to lymphocyte activation.


Assuntos
Bacillus anthracis/metabolismo , Células Dendríticas/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Ácido Poliglutâmico/análogos & derivados , Animais , Citocinas/metabolismo , Células Dendríticas/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Peptidoglicano/metabolismo , Ácido Poliglutâmico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
2.
Oncotarget ; 8(8): 13632-13651, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28099142

RESUMO

We previously reported the role of cancer/testis antigen CAGE in the response to anti-cancer drugs. CAGE increased the expression of cyclinD1, and pGSK3ßSer9, an inactive GSK3ß, while decreasing the expression of phospho-cyclinD1Thr286. CAGE showed binding to GSK3ß and the domain of CAGE (amino acids 231-300) necessary for binding to GSK3ß and for the expression regulation of cyclinD1 was determined. 269GTGKT273 peptide, corresponding to the DEAD box helicase domain of CAGE, decreased the expression of cyclinD1 and pGSK3ßSer9 while increasing the expression of phospho-cyclinD1Thr286. GTGKT peptide showed the binding to CAGE and prevented CAGE from binding to GSK3ß. GTGKT peptide changed the localization of CAGE and inhibited the binding of CAGE to the promoter sequences of cyclin D1. GTGKT peptide enhanced the apoptotic effects of anti-cancer drugs and decreased the migration, invasion, angiogenic, tumorigenic and metastatic potential of anti-cancer drug-resistant cancer cells. We found that Lys272 of GTGKT peptide was necessary for conferring anti-cancer activity. Peptides corresponding to the DEAD box helicase domain of CAGE, such as AQTGTGKT, QTGTGKT and TGTGKT, also showed anti-cancer activity by preventing CAGE from binding to GSK3ß. GTGKT peptide showed ex vivo tumor homing potential. Thus, peptides corresponding to the DEAD box helicase domain of CAGE can be developed as anti-cancer drugs in cancer patients expressing CAGE.


Assuntos
Antineoplásicos/farmacologia , Ciclina D1/biossíntese , RNA Helicases DEAD-box/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Oligopeptídeos/farmacologia , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Ciclina D1/genética , RNA Helicases DEAD-box/metabolismo , Resistencia a Medicamentos Antineoplásicos , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Regiões Promotoras Genéticas , Domínios Proteicos
3.
Mol Cells ; 39(4): 299-309, 2016 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-26912082

RESUMO

We have previously reported the role of miR-217 in anti-cancer drug-resistance. miRNA array and miRNA hybridization analysis predicted miR-30a-3p as a target of miR-217. miR-30a-3p and miR-217 formed a negative feedback loop and regulated the expression of each other. Ago1 immunoprecipitation and co-localization analysis revealed a possible interaction between miR-30a-3p and miR-217. miR-30a-3p conferred resistance to anti-cancer drugs and enhanced the invasion, migration, angiogenic, tumorigenic, and metastatic potential of cancer cells in CAGE-dependent manner. CAGE increased the expression of miR-30a-3p by binding to the promoter sequences of miR-30a-3p, suggesting a positive feedback loop between CAGE and miR-30a-3p. miR-30a-3p decreased the expression of p53, which showed the binding to the promoter sequences of miR-30a-3p and CAGE in anti-cancer drug-sensitive cancer cells. Luciferase activity assays showed that p53 serves as a target of miR-30a. Thus, the miR-30a-3p-CAGE-p53 feedback loop serves as a target for overcoming resistance to anti-cancer drugs.


Assuntos
RNA Helicases DEAD-box/metabolismo , Resistencia a Medicamentos Antineoplásicos , Melanoma/genética , MicroRNAs/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , RNA Helicases DEAD-box/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Metástase Neoplásica , Neoplasias Experimentais , Proteína Supressora de Tumor p53/genética , Regulação para Cima
4.
Oncotarget ; 7(9): 10297-321, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26863629

RESUMO

MicroRNA array analysis revealed that miR-217 expression was decreased in anti-cancer drug-resistant Malme3MR cancer cells. CAGE, a cancer/testis antigen, was predicted as a target of miR-217. Luciferase activity and ChIP assays revealed a negative feedback relationship between CAGE and miR-217. miR-217 and CAGE oppositely regulated the response to anti-cancer drugs such as taxol, gefitinib and trastuzumab, an inhibitor of HER2. miR-217 negatively regulated the tumorigenic, metastatic, angiogenic, migration and invasion potential of cancer cells. The xenograft of Malme3MR cells showed an increased expression of pEGFRY845. CAGE and miR-217 inhibitor regulated the expression of pEGFRY845. CAGE showed interactions with EGFR and HER2 and regulated the in vivo sensitivity to trastuzumab. The down-regulation of EGFR or HER2 enhanced the sensitivity to anti-cancer drugs. CAGE showed direct regulation of HER2 and was necessary for the interaction between EGFR and HER2 in Malme3MR cells. miR-217 inhibitor induced interactions of CAGE with EGFR and HER2 in Malme3M cells. The inhibition of EGFR by CAGE-binding GTGKT peptide enhanced the sensitivity to gefitinib and trastuzumab and prevented interactions of EGFR with CAGE and HER2. Our results show that miR-217-CAGE feedback loop serves as a target for overcoming resistance to various anti-cancer drugs, including EGFR and HER2 inhibitors.


Assuntos
Antineoplásicos/farmacologia , RNA Helicases DEAD-box/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , MicroRNAs/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , RNA Helicases DEAD-box/genética , Feminino , Gefitinibe , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Neovascularização Patológica/tratamento farmacológico , Paclitaxel/farmacologia , Quinazolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Trastuzumab/farmacologia
6.
Front Immunol ; 6: 210, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25983734

RESUMO

We previously reported the anti-allergic effect of high molecular weight form of hyaluronic acid (HMW-HA). In doing so, HA targets CD44 and inhibits FcεRI signaling and cross-talk between epidermal growth factor receptor (EGFR) and FcεRI. We previously reported the role of histone deacetylases (HDACs) in allergic inflammation and allergic inflammation-promoted enhanced tumorigenic potential. We reported regulatory role of HA in the expression of HDAC3. In this review, we will discuss molecular mechanisms associated with anti-allergic effect of HA in relation with HDACs. The role of microRNAs (miRNAs) in allergic inflammation has been reported. We will also discuss the role of miRNAs in allergic inflammation in relation with HA-mediated anti-allergic effects.

7.
Mol Cells ; 38(6): 562-72, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25997740

RESUMO

We previously reported the role of histone deacetylase 3 (HDAC3) in response to anti-cancer drugs. The decreased expression of HDAC3 in anti-cancer drug-resistant cancer cell line is responsible for the resistance to anti-cancer drugs. In this study, we investigated molecular mechanisms associated with regulation of HDAC3 expression. MG132, an inhibitor of proteasomal degradation, induced the expression of HDAC3 in various anti-cancer drug-resistant cancer cell lines. Ubiquitination of HDAC3 was observed in various anti-cancer drug-resistant cancer cell lines. HDAC3 showed an interaction with SIAH2, an ubiquitin E3 ligase, that has increased expression in various anti-cancer drug-resistant cancer cell lines. miRNA array analysis showed the decreased expression of miR-335 in these cells. Targetscan analysis predicted the binding of miR-335 to the 3'-UTR of SIAH2. miR-335-mediated increased sensitivity to anti-cancer drugs was associated with its effect on HDAC3 and SIAH2 expression. miR-335 exerted apoptotic effects and inhibited ubiquitination of HDAC3 in anti-cancer drug-resistant cancer cell lines. miR-335 negatively regulated the invasion, migration, and growth rate of cancer cells. The mouse xenograft model showed that miR-335 negatively regulated the tumorigenic potential of cancer cells. The down-regulation of SIAH2 conferred sensitivity to anti-cancer drugs. The results of the study indicated that the miR-335/SIAH2/HDAC3 axis regulates the response to anti-cancer drugs.


Assuntos
Histona Desacetilases/biossíntese , MicroRNAs/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Xenoenxertos , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Leupeptinas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética
8.
J Immunol ; 194(9): 4287-97, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25825445

RESUMO

PGs are emerging as important immune modulators. Since our report on the expression of PG synthases in human follicular dendritic cells, we investigated the potential immunoregulatory function of PGs and their production mechanisms. In this study, we explored the intracellular signaling molecules mediating TGF-ß-induced cyclooxygenase (COX)-2 augmentation in follicular dendritic cell-like cells. TGF-ß triggered phosphorylation of Smad3 and ERK, which were essential for the increase in COX-2 protein. Interestingly, depletion of suppressor of cytokine signaling 1 (SOCS1) resulted in an almost complete inhibition of Smad3 phosphorylation and COX-2 induction. Nuclear translocation of Smad3 was inhibited in SOCS1-depleted cells. SOCS1 knockdown also downregulated TGF-ß-stimulated Snail expression and its binding to the Cox-2 promoter. In contrast, overexpression of SOCS1 gave rise to a significant increase in Snail and COX-2 proteins. SOCS1 was reported to be a negative regulator of cytokine signaling by various investigators. However, our current data suggest that SOCS1 promotes TGF-ß-induced COX-2 expression and PG production by facilitating Smad3 phosphorylation and Snail binding to the Cox-2 promoter. The complete understanding of the biological function of SOCS1 might be obtained via extensive studies with diverse cell types.


Assuntos
Células Dendríticas Foliculares/imunologia , Células Dendríticas Foliculares/metabolismo , Prostaglandinas/biossíntese , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Células Dendríticas Foliculares/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Fosforilação , Transporte Proteico , Transdução de Sinais , Proteína Smad3/metabolismo , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/genética , Fator de Crescimento Transformador beta/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
J Biol Chem ; 290(22): 14245-66, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25907560

RESUMO

Cyclooxgenase-2 (COX-2) knock-out mouse experiments showed that COX-2 was necessary for in vivo allergic inflammation, such as passive cutaneous anaphylaxis, passive systemic anaphylaxis, and triphasic cutaneous allergic reaction. TargetScan analysis predicted COX-2 as a target of miR-26a and miR-26b. miR-26a/-26b decreased luciferase activity associated with COX-2-3'-UTR. miR-26a/-26b exerted negative effects on the features of in vitro and in vivo allergic inflammation by targeting COX-2. ChIP assays showed the binding of HDAC3 and SNAIL, but not COX-2, to the promoter sequences of miR-26a and miR-26b. Cytokine array analysis showed that the induction of chemokines, such as MIP-2, in the mouse passive systemic anaphylaxis model occurred in a COX-2-dependent manner. ChIP assays showed the binding of HDAC3 and COX-2 to the promoter sequences of MIP-2. In vitro and in vivo allergic inflammation was accompanied by the increased expression of MIP-2. miR-26a/-26b negatively regulated the expression of MIP-2. Allergic inflammation enhanced the tumorigenic and metastatic potential of cancer cells and induced positive feedback involving cancer cells and stromal cells, such as mast cells, macrophages, and endothelial cells. miR-26a mimic and miR-26b mimic negatively regulated the positive feedback between cancer cells and stromal cells and the positive feedback among stromal cells. miR-26a/-26b negatively regulated the enhanced tumorigenic potential by allergic inflammation. COX-2 was necessary for the enhanced metastatic potential of cancer cells by allergic inflammation. Taken together, our results indicate that the miR26a/-26b-COX-2-MIP-2 loop regulates allergic inflammation and the feedback relationship between allergic inflammation and the enhanced tumorigenic and metastatic potential.


Assuntos
Quimiocina CXCL2/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inflamação/metabolismo , MicroRNAs/metabolismo , Neoplasias/metabolismo , Regiões 3' não Traduzidas , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Colágeno/química , Combinação de Medicamentos , Feminino , Hipersensibilidade/metabolismo , Imunoglobulina E/metabolismo , Laminina/química , Pulmão/metabolismo , Macrófagos/metabolismo , Masculino , Melanoma Experimental , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Proteoglicanas/química , Ratos , Espécies Reativas de Oxigênio/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
10.
J Biol Chem ; 289(43): 29483-505, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25202021

RESUMO

The molecular mechanism of transglutaminase II (TGaseII)-mediated allergic inflammation remains largely unknown. TGaseII, induced by antigen stimulation, showed an interaction and co-localization with FcϵRI. TGaseII was necessary for in vivo allergic inflammation, such as triphasic cutaneous reaction, passive cutaneous anaphylaxis, and passive systemic anaphylaxis. TGaseII was necessary for the enhanced metastatic potential of B16F1 melanoma cells by passive systemic anaphylaxis. TGaseII was shown to be a secreted protein. Recombinant TGaseII protein increased the histamine release and ß-hexosaminidase activity, and enhanced the metastatic potential of B16F1 mouse melanoma cells. Recombinant TGaseII protein induced the activation of EGF receptor and an interaction between EGF receptor and FcϵRI. Recombinant TGaseII protein displayed angiogenic potential accompanied by allergic inflammation. R2 peptide, an inhibitor of TGaseII, exerted negative effects on in vitro and in vivo allergic inflammation by regulating the expression of TGaseII and FcϵRI signaling. MicroRNA (miR)-218 and miR-181a, decreased during allergic inflammation, were predicted as negative regulators of TGaseII by microRNA array and TargetScan analysis. miR-218 and miR-181a formed a negative feedback loop with TGaseII and regulated the in vitro and in vivo allergic inflammation. TGaseII was necessary for the interaction between mast cells and macrophages during allergic inflammation. Mast cells and macrophages, activated during allergic inflammation, were responsible for the enhanced metastatic potential of tumor cells that are accompanied by allergic inflammation. In conclusion, the TGaseII/miR-218/-181a feedback loop can be employed for the development of anti-allergy therapeutics.


Assuntos
Retroalimentação Fisiológica , Proteínas de Ligação ao GTP/metabolismo , Hipersensibilidade/patologia , Inflamação/patologia , Melanoma/patologia , MicroRNAs/metabolismo , Transglutaminases/metabolismo , Animais , Antígenos/metabolismo , Sequência de Bases , Movimento Celular/efeitos dos fármacos , Receptores ErbB/metabolismo , Retroalimentação Fisiológica/efeitos dos fármacos , Feminino , Proteínas de Ligação ao GTP/antagonistas & inibidores , Hipersensibilidade/complicações , Hipersensibilidade/genética , Inflamação/complicações , Inflamação/genética , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Melanoma/irrigação sanguínea , Melanoma/genética , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Metástase Neoplásica , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Anafilaxia Cutânea Passiva/genética , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteína 2 Glutamina gama-Glutamiltransferase , Receptores de IgE/metabolismo , Pele/patologia , Transglutaminases/antagonistas & inibidores
11.
J Biol Chem ; 289(40): 28019-39, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25138213

RESUMO

Histone modification is known to be associated with multidrug resistance phenotypes. Cancer cell lines that are resistant or have been made resistant to anti-cancer drugs showed lower expression levels of histone deacetylase-3 (HDAC3), among the histone deacetylase(s), than cancer cell lines that were sensitive to anti-cancer drugs. Celastrol and Taxol decreased the expression of HDAC3 in cancer cell lines sensitive to anti-cancer drugs. HDAC3 negatively regulated the invasion, migration, and anchorage-independent growth of cancer cells. HDAC3 conferred sensitivity to anti-cancer drugs in vitro and in vivo. TargetScan analysis predicted miR-326 as a negative regulator of HDAC3. ChIP assays and luciferase assays showed a negative feedback loop between HDAC3 and miR-326. miR-326 decreased the apoptotic effect of anti-cancer drugs, and the miR-326 inhibitor increased the apoptotic effect of anti-cancer drugs. miR-326 enhanced the invasion and migration potential of cancer cells. The miR-326 inhibitor negatively regulated the tumorigenic, metastatic, and angiogenic potential of anti-cancer drug-resistant cancer cells. HDAC3 showed a positive feedback loop with miRNAs such as miR-200b, miR-217, and miR-335. miR-200b, miR-217, and miR-335 negatively regulated the expression of miR-326 and the invasion and migration potential of cancer cells while enhancing the apoptotic effect of anti-cancer drugs. TargetScan analysis predicted miR-200b and miR-217 as negative regulators of cancer-associated gene, a cancer/testis antigen, which is known to regulate the response to anti-cancer drugs. HDAC3 and miR-326 acted upstream of the cancer-associated gene. Thus, we show that the miR-326-HDAC3 feedback loop can be employed as a target for the development of anti-cancer therapeutics.


Assuntos
Carcinogênese/genética , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases/metabolismo , MicroRNAs/metabolismo , Neoplasias/enzimologia , Neovascularização Patológica/enzimologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Retroalimentação Fisiológica/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Desacetilases/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Neoplasias/genética , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/patologia
12.
J Biol Chem ; 289(17): 12126-12144, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24619412

RESUMO

Allergic inflammation has been known to enhance the metastatic potential of tumor cells. The role of histone deacetylase-3 (HDAC3) in allergic skin inflammation was reported. We investigated HDAC3 involvement in the allergic inflammation-promotion of metastatic potential of tumor cells. Passive systemic anaphylaxis (PSA) induced HDAC3 expression and FcεRI signaling in BALB/c mice. PSA enhanced the tumorigenic and metastatic potential of mouse melanoma cells in HDAC3- and monocyte chemoattractant protein 1-(MCP1)-dependent manner. The PSA-mediated enhancement of metastatic potential involved the induction of HDAC3, MCP1, and CD11b (a macrophage marker) expression in the lung tumor tissues. We examined an interaction between anaphylaxis and tumor growth and metastasis at the molecular level. Conditioned medium from antigen-stimulated bone marrow-derived mouse mast cell cultures induced the expression of HDAC3, MCP1, and CCR2, a receptor for MCP1, in B16F1 mouse melanoma cells and enhanced migration and invasion potential of B16F1 cells. The conditioned medium from B16F10 cultures induced the activation of FcεRI signaling in lung mast cells in an HDAC3-dependent manner. FcεRI signaling was observed in lung tumors derived from B16F10 cells. Target scan analysis predicted HDAC3 to be as a target of miR-384, and miR-384 and HDAC3 were found to form a feedback regulatory loop. miR-384, which is decreased by PSA, negatively regulated HDAC3 expression, allergic inflammation, and the positive feedback regulatory loop between anaphylaxis and tumor metastasis. We show the miR-384/HDAC3 feedback loop to be a novel regulator of the positive feedback relationship between anaphylaxis and tumor metastasis.


Assuntos
Anafilaxia/enzimologia , Histona Desacetilases/metabolismo , Melanoma Experimental/enzimologia , Metástase Neoplásica , Anafilaxia/fisiopatologia , Animais , Sequência de Bases , Temperatura Corporal , Linhagem Celular Tumoral , Primers do DNA , Feminino , Mastócitos/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quimioatraentes de Monócitos/metabolismo , Ratos
13.
BMB Rep ; 47(4): 227-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24286308

RESUMO

Histone deacetylase-3 (HDAC3) is involved in cellular proliferation, apoptosis and transcriptional repression. However, the role of HDAC3 in angiogenesis remains unknown. HDAC3 negatively regulated the expression of angiogenic factors, such as VEGF and plasminogen activator inhibitor-1 (PAI-1). HDAC3 showed binding to promoter sequences of PAI-1. HDAC3 activity was necessary for the expression regulation of PAI-1 by HDAC3. VEGF decreased the expression of HDAC3, and the down-regulation of HDAC3 enhanced endothelial cell tube formation. HDAC3 negatively regulated tumor-induced angiogenic potential. We show the novel role of HDAC3 as a negative regulator of angiogenesis.


Assuntos
Histona Desacetilases/metabolismo , Neovascularização Patológica/metabolismo , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos
14.
BMB Rep ; 47(6): 342-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24286324

RESUMO

Histone acetylation/deacetylation has been known to be associated with the transcriptional regulation of various genes. The role of histone deacetylase-3 in the expression regulation of MDR1 was investigated. The expression level of HDAC3 showed an inverse relationship with the expression level of MDR1. Wild-type HDAC3, but not catalytic mutant HDAC3(S424A), negatively regulated the expression of MDR1. Wild-type HDAC3, but not catalytic mutant HDAC3(S424A), showed binding to the promoter sequences of HDAC3. HDAC3 regulated the expression level, and the binding of Ac-H3(K9/14) and Ac-H4(K16) around the MDR1 promoter sequences. The nuclear localization signal domain of HDAC3 was necessary, and sufficient for the binding of HDAC3 to the MDR1 promoter sequences and for conferring sensitivity to microtubule-targeting drugs.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Histona Desacetilases/metabolismo , Acetilação , Substituição de Aminoácidos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Células Hep G2 , Histona Desacetilases/análise , Histona Desacetilases/genética , Histonas/química , Histonas/metabolismo , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína
15.
J Biol Chem ; 288(51): 36502-18, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24174534

RESUMO

Cancer/testis antigen cancer-associated gene (CAGE) is known to be involved in various cellular processes, such as proliferation, cell motility, and anti-cancer drug resistance. However, the mechanism of the expression regulation of CAGE remains unknown. Target scan analysis predicted the binding of microRNA-200b (miR-200b) to CAGE promoter sequences. The expression of CAGE showed an inverse relationship with miR-200b in various cancer cell lines. miR-200b was shown to bind to the 3'-UTR of CAGE and to regulate the expression of CAGE at the transcriptional level. miR-200b also enhanced the sensitivities to microtubule-targeting drugs in vitro. miR-200b and CAGE showed opposite regulations on invasion potential and responses to microtubule-targeting drugs. Xenograft experiments showed that miR-200b had negative effects on the tumorigenic and metastatic potential of cancer cells. The effect of miR-200b on metastatic potential involved the expression regulation of CAGE by miR-200b. miR-200b decreased the tumorigenic potential of a cancer cell line resistant to microtubule-targeting drugs in a manner associated with the down-regulation of CAGE. ChIP assays showed the direct regulation of miR-200b by CAGE. CAGE enhanced the invasion potential of a cancer cell line stably expressing miR-200b. miR-200b exerted a negative regulation on tumor-induced angiogenesis. The down-regulation of CAGE led to the decreased expression of plasminogen activator inhibitor-1, a TGFß-responsive protein involved in angiogenesis, and VEGF. CAGE mediated tumor-induced angiogenesis and was necessary for VEGF-promoted angiogenesis. Human recombinant CAGE protein displayed angiogenic potential. Thus, miR-200b and CAGE form a feedback regulatory loop and regulate the response to microtubule-targeting drugs, as well as the invasion, tumorigenic potential, and angiogenic potential.


Assuntos
Antineoplásicos/farmacologia , Carcinogênese/metabolismo , RNA Helicases DEAD-box/metabolismo , Retroalimentação Fisiológica , MicroRNAs/metabolismo , Neovascularização Patológica/metabolismo , Moduladores de Tubulina/farmacologia , Animais , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Galinhas , RNA Helicases DEAD-box/genética , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Invasividade Neoplásica , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Mol Immunol ; 53(1-2): 1-14, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22784989

RESUMO

The role of DNA methyl transferase I (DNMT1) in allergic inflammation was investigated. Antigen stimulation decreased expression of DNMT1 in rat basophilic leukemia cells (RBL2H3). The down regulation of DNMT1 induced expression of histone deacetylase 3 (HDAC3). HDAC3 was necessary for allergic skin inflammation, such as such as triphasic cutaneous reaction and passive cutaneous anaphylaxis. The down regulation of DNMT1 resulted from activation of PKC and rac1 which were necessary for proteasome-dependent ubiquitination of DNMT1 by antigen stimulation. N-acetyl-L-cysteine, an inhibitor of reactive oxygen species production, exerted negative effects on allergic skin inflammation. Antigen stimulation led to increased expression of Tip60, a histone acetyl transferase. Wild type, but not mutant form, Tip60 decreased expression of DNMT1 while increasing expression of HDAC3, suggesting role for acetylation in ubiquitin-dependent proteasomal degradation of DNMT1. In vivo down regulation of DNMT1 increased ear thickness, typical of allergic skin inflammation, induced vascular leakage and promoted angiogenesis in BALB/c mouse. The down regulation of DNMT1 enhanced angiogenic potential of rat aortic endothelial cells (RAEC) accompanied by activation of VEGR-2 and induced interaction between VEGR-2 and syk in RAEC. The enhanced angiogenic potential of RAEC was associated with the induction of VEGF by down regulation of DNMT1 in RBL2H3 cells. The down regulation of DNMT1 induced leukocytes-endothelial cell interaction and expression of various adhesion molecules. Aspirin exerted a negative effect on allergic skin inflammation by indirect regulation on DNMT1 via Tip60. Taken together, these results suggest novel role for DNMT1 in allergic skin inflammation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/imunologia , Hipersensibilidade/imunologia , Transdução de Sinais/imunologia , Dermatopatias/imunologia , Animais , Comunicação Celular , Imunoprecipitação da Cromatina , DNA (Citosina-5-)-Metiltransferases/metabolismo , Regulação para Baixo , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Histona Desacetilases/imunologia , Histona Desacetilases/metabolismo , Hipersensibilidade/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Fisiológica , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Dermatopatias/metabolismo
17.
J Biol Chem ; 287(31): 25844-59, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22679019

RESUMO

We have shown the induction of histone deacetylase 3 (HDAC3) in antigen-stimulated rat basophilic leukemia cells via NF-κB. We investigated the role of HDAC3 in allergic skin inflammation. We used a BALB/c mouse model of triphasic cutaneous anaphylaxis (triphasic cutaneous reaction; TpCR) and passive cutaneous anaphylaxis (PCA) to examine the role of HDAC3 in allergic skin inflammation. Triphasic cutaneous reaction involved induction of HDAC3 and was mediated by HDAC3. HDAC3 showed an interaction with FcεRIß. Trichostatin A (TSA), an inhibitor of HDAC(s), disrupted this interaction. Cytokine array analysis showed that the down-regulation of HDAC3 led to the decreased secretion of monocyte chemoattractant protein 1 (MCP1). FcεRI was necessary for induction of HDAC3 and MCP1. ChIP assays showed that HDAC3, in association with Sp1 and c-Jun, was responsible for induction of MCP1 expression. TSA exerted a negative effect on induction of MCP1. HDAC3 exerted a negative regulation on expression of HDAC2 via interaction with Rac1. The down-regulation of HDAC3 or inactivation of Rac1 induced binding of HDAC2 to MCP1 promoter sequences. TSA exerted a negative effect on HDAC3-mediated TpCR. The BALB/c mouse model of PCA involved induction of HDAC3 and MCP1. HDAC3 and MCP1 were necessary for PCA that involved ear swelling, enhanced vascular permeability, and angiogenesis. Recombinant MCP1 enhanced ß-hexosaminidase activity and histamine release and also showed angiogenic potential. TSA exerted a negative effect on PCA. Our data show HDAC3 as a valuable target for the development of allergic skin inflammation therapeutics.


Assuntos
Quimiocina CCL2/metabolismo , Dermatite Alérgica de Contato/enzimologia , Regulação da Expressão Gênica/imunologia , Histona Desacetilases/metabolismo , Animais , Permeabilidade Capilar/imunologia , Linhagem Celular , Quimiocina CCL2/genética , Dermatite Alérgica de Contato/imunologia , Dinitrofluorbenzeno/imunologia , Feminino , Histona Desacetilase 2/genética , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/fisiologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Fisiológica , Neuropeptídeos/metabolismo , Anafilaxia Cutânea Passiva , Regiões Promotoras Genéticas , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Receptores de IgE/metabolismo , Ativação Transcricional , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP
18.
Mol Cells ; 33(6): 563-74, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22610405

RESUMO

Hyaluronic acid (HA) has been shown to promote angiogenesis. However, the mechanism behind this effect remains largely unknown. Therefore, in this study, the mechanism of HA-induced angiogenesis was examined. CD44 and PKCδ were shown to be necessary for induction of the receptor for HA-mediated cell motility (RHAMM), a HA-binding protein. RHAMM was necessary for HA-promoted cellular invasion and endothelial cell tube formation. Cytokine arrays showed that HA induced the expression of plasminogen activator-inhibitor-1 (PAI), a downstream target of TGFß receptor signaling. The induction of PAI-1 was dependent on CD44 and PKCδ. HA also induced an interaction between RHAMM and TGFß receptor I, and induction of PAI-1 was dependent on RHAMM and TGFß receptor I. Histone deacetylase 3 (HDAC3), which is decreased by HA via rac1, reduced induction of plasminogen activator inhibitor-1 (PAI-1) by HA. ERK, which interacts with RHAMM, was necessary for induction of PAI-1 by HA. Snail, a downstream target of TGFß signaling, was also necessary for induction of PAI-1. The down regulation of PAI-1 prevented HA from enhancing endothelial cell tube formation and from inducing expression of angiogenic factors, such as ICAM-1, VCAM-1 and MMP-2. HDAC3 also exerted reduced expression of MMP-2. In this study, we provide a novel mechanism of HA-promoted angiogenesis, which involved RHAMM-TGFßRI signaling necessary for induction of PAI-1.


Assuntos
Indutores da Angiogênese/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/farmacologia , Proteína Quinase C-delta/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Animais , Células Cultivadas , Proteínas da Matriz Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Histona Desacetilases/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Receptores de Hialuronatos/genética , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Fisiológica/efeitos dos fármacos , Neuropeptídeos/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Ativação Transcricional , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP
19.
Mol Immunol ; 48(8): 1035-45, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21349584

RESUMO

Recent reports have suggested role for epidermal growth factor receptor (EGFR) in asthma and skin inflammation. Integrin(s) are known to be necessary for the transactivation of EGFR. The roles of EGFR and integrin(s) in allergic inflammation were investigated. Antigen stimulation induced activation of EGFR and interaction between EGFR and integrin α(5) in Rat Basophilic Leukemia (RBL2H3) cells and bone marrow-derived mouse mast cells (BMMCs). Flow cytometry revealed increased phosphorylation of EGFR on cell surfaces. Antigen stimulation induced interaction between EGFR and FcɛRI in both RBL2H3 cells and BMMCs. Blocking of EGFR or integrin α exerted negative effects on rac1 activity and secretion of ß-hexosaminidase in both RBL2H3 cells and BMMCs. EGFR and integrin α(5) were found to be necessary for IgE-dependent cutaneous anaphylaxis. FAK (focal adhesion kinase), interacted with EGFR and with FcɛRI upon antigen stimulation, and it was necessary for the increased secretion of ß-hexosaminidase in both RBL2H3 cells and BMMCs. EGFR and integrin α(5) were necessary for interactions between activated RBL2H3 cells, BMMCs and rat aortic endothelial cells (RAECs). Conditioned medium of antigen-stimulated RBL2H3 cells promoted RAECs tube formation, rat aortic ring formation and blood vessel formation. Conditioned medium of antigen-stimulated BMMCs also had the same effects on RAECs. This enhanced angiogenic potential of RAECs was dependent on EGFR and integrin α(5). In conclusion, EGFR, via interaction with FcɛRI and integrin α(5), is necessary for allergic inflammation associated with cellular interaction.


Assuntos
Asma/fisiopatologia , Receptores ErbB/metabolismo , Integrina alfa5/metabolismo , Neovascularização Fisiológica/fisiologia , Receptores de IgE/metabolismo , Transdução de Sinais/fisiologia , Animais , Asma/metabolismo , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Citometria de Fluxo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Masculino , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Ligação Proteica , Ratos , Ratos Sprague-Dawley , beta-N-Acetil-Hexosaminidases/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
20.
J Biol Chem ; 285(34): 25957-68, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20534591

RESUMO

The role of the cancer/testis antigen CAGE in drug resistance was investigated. The drug-resistant human melanoma Malme3M (Malme3M(R)) and the human hepatic cancer cell line SNU387 (SNU387(R)) showed in vivo drug resistance and CAGE induction. Induction of CAGE resulted from decreased expression and thereby displacement of DNA methyltransferase 1(DNMT1) from CAGE promoter sequences. Various drugs induce expression of CAGE by decreasing expression of DNMT1, and hypomethylation of CAGE was correlated with the increased expression of CAGE. Down-regulation of CAGE in these cell lines decreased invasion and enhanced drug sensitivity resulting from increased apoptosis. Down-regulation of CAGE also led to decreased anchorage-independent growth. Down-regulation of CAGE led to increased expression of p53, suggesting that CAGE may act as a negative regulator of p53. Down-regulation of p53 enhanced resistance to drugs and prevented drugs from exerting apoptotic effects. In SNU387(R) cells, CAGE induced the interaction between histone deacetylase 2 (HDAC2) and Snail, which exerted a negative effect on p53 expression. Chromatin immunoprecipitation assay showed that CAGE, through interaction with HDAC2, exerted a negative effect on p53 expression in Malme3M(R) cells. These results suggest that CAGE confers drug resistance by regulating expression of p53 through HDAC2. Taken together, these results show the potential value of CAGE as a target for the development of cancer therapeutics.


Assuntos
RNA Helicases DEAD-box/fisiologia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 2/metabolismo , Proteína Supressora de Tumor p53/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , Humanos , Proteínas de Neoplasias , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA