Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
ACS Appl Bio Mater ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616360

RESUMO

This study introduces a dual-mode biosensor specifically designed for the quantitative detection of viruses in rapid analysis. The biosensor is unique in its use of both optical (fluorescence) and electrochemical (impedance) detection methods using the same nanocomposites, providing a dual confirmation system for virus (norovirus-like particles) quantification. The system is based on using two antibody-conjugated nanocomposites: CdSeS quantum dots and Au-N,S-GQD nanocomposites. For optical detection, the principle relies on the fluorescence quenching of CdSeS by Au-N,S-GQD in a sandwich structure with the target. Conversely, electrochemical detection is based on the change in impedance caused by the formation of the same sandwich structure. The biosensor demonstrated exceptional sensitivity, capable of detecting norovirus at concentrations of as low as femtomolar in the electrochemical method and picomolar in the optical method. In the dual-responsive concentration range from 10-13 to 10-10 M, the sensor is highly sensitive in both methods, creating significant changes in fluorescence intensity and impedance in the presence of virus. Furthermore, the biosensor exhibits a high degree of specificity, with a negligible response to nontarget proteins, even within complex test solutions. This work represents a significant advancement in the field of biosensor technology, offering a fast, accurate, and reliable method for diagnosing viral infections and diseases.

2.
Mikrochim Acta ; 191(4): 174, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436801

RESUMO

Early diagnosis of dengue infection by detecting the dengue virus non-structural protein 1 (DENV-NS1) is important to the patients to initiate speedy treatment. Enzyme-linked immunosorbent assay (ELISA)-based NS1 detection and RT-PCR are time-consuming and too complex to be employed in remote areas of dengue-endemic countries. Meanwhile, those of NS1 rapid test by lateral flow assay suffer from low detection limit. Electrochemical-based biosensors using screen-printed gold electrodes (SPGEs) have become a reliable detection method to convey both ELISA's high sensitivity and rapid test portability. In this research, we developed an electrochemical biosensor for DENV-NS1 detection by employing polydopamine (PDA)-modified SPGE. The electrodeposition of PDA on the surface of SPGE serves as a bioconjugation avenue for anti-NS1 antibody through a simple and low-cost immobilization procedure. The biosensor performance was evaluated to detect DENV-NS1 protein in PBS and human serum through a differential pulse voltammetric (DPV) technique. The developed sensing platform displayed a low limit of detection (LOD) of 1.63 pg mL-1 and a wide linear range of 10 pg mL-1 to 1 ng mL-1 (R2 ∼ 0.969). The sensing platform also detected DEV-NS1 from four different serotypes in the clinical samples collected from dengue patients in India and Indonesia, with acceptable sensitivity, specificity, and accuracy values of 90.00%, 80.95%, and 87.65%, respectively. This result showcased the facile and versatile method of PDA coating onto the surface of screen-printed gold electrodes for a miniaturized point-of-care (PoC) detection device.


Assuntos
Vírus da Dengue , Dengue , Indóis , Sistemas Automatizados de Assistência Junto ao Leito , Polímeros , Humanos , Dengue/diagnóstico , Eletrodos , Ouro , Proteínas não Estruturais Virais/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-38337075

RESUMO

Rapid diagnosis and treatment of infectious illnesses are crucial for clinical outcomes and public health. Biosensing developments enhance diagnostics at the point of care. This is superior to traditional procedures, which need centralized lab facilities, specialized personnel, and large equipment. The emerging coronavirus epidemic threatens global health and economic security. Increasing viral surveillance and regulatory actions against disease transmission necessitate rapid, sensitive testing tools for viruses. Due to their sensitivity and specificity, biosensors offer a possible reliable and quantifiable viral detection method. Current advances in genetic engineering, such as genetic alteration and material engineering, have provided several opportunities to enhance biosensors' sensitivity, selectivity, and recognition efficiency. This chapter explains biosensing techniques, biosensor varieties, and signal amplification technologies. Challenges and potential developments for viral microorganisms based on biosensors and signal amplification were also investigated.

4.
Mol Biotechnol ; 66(5): 1144-1153, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38184809

RESUMO

AgHST1 and AgHST3 genes encode sirtuins that are NAD+-dependent protein deacetylases. According to previous reports, their disruption leads to the overproduction of riboflavin in Ashbya gossypii. In this study, we investigated the potential causes of riboflavin overproduction in the AgHST1Δ and AgHST3Δ mutant strains of A. gossypii. The generation of reactive oxygen species was increasd in the mutants compared to in WT. Additionally, membrane potential was lower in the mutants than in WT. The NAD+/NADH ratio in AgHST1Δ mutant strain was lower than that in WT; however, the NAD+/NADH ratio in AgHST3Δ was slightly higher than that in WT. AgHST1Δ mutant strain was more sensitive to high temperatures and hydroxyurea treatment than WT or AgHST3Δ. Expression of the AgGLR1 gene, encoding glutathione reductase, was substantially decreased in AgHST1Δ and AgHST3Δ mutant strains. The addition of N-acetyl-L-cysteine, an antioxidant, suppressed the riboflavin production in the mutants, indicating that it was induced by oxidative stress. Therefore, high oxidative stress resulting from the disruption of sirtuin genes induces riboflavin overproduction in AgHST1Δ and AgHST3Δ mutant strains. This study established that oxidative stress is an important trigger for riboflavin overproduction in sirtuin gene-disrupted mutant strains of A. gossypii and helped to elucidate the mechanism of riboflavin production in A. gossypii.


Assuntos
Eremothecium , Estresse Oxidativo , Espécies Reativas de Oxigênio , Riboflavina , Sirtuínas , Riboflavina/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Eremothecium/genética , Eremothecium/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mutação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , NAD/metabolismo , Antioxidantes/metabolismo , Regulação Fúngica da Expressão Gênica , Glutationa Redutase/genética , Glutationa Redutase/metabolismo
5.
FEBS J ; 290(20): 4984-4998, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37438884

RESUMO

Glycoside hydrolase family 31 (GH31) contains α-glycoside hydrolases with different substrate specificities involved in various physiological functions. This family has recently been classified into 20 subfamilies using sequence similarity networks. An α-galactosidase from the gut bacterium Bacteroides salyersiae (BsGH31_19, which belongs to GH31 subfamily 19) was reported to have hydrolytic activity against the synthetic substrate p- nitrophenyl α-galactopyranoside, but its natural substrate remained unknown. BsGH31_19 shares low sequence identity (around 20%) with other reported GH31 α-galactosidases, PsGal31A from Pseudopedobacter saltans and human myogenesis-regulating glycosidase (MYORG), and was expected to have distinct specificity. Here, we characterized BsGH31_19 and its ortholog from a soil Bacteroidota bacterium, Flavihumibacter petaseus (FpGH31_19), and demonstrated that they showed high substrate specificity against α-(1→4)-linkages in α-(1→4)-galactobiose and globotriose [α-Gal-(1→4)-ß-Gal-(1→4)-Glc], unlike PsGal31A and MYORG. The crystallographic analyses of BsGH31_19 and FpGH31_19 showed that their overall structures resemble those of MYORG and form a dimer with an interface different from that of PsGal31A and MYORG dimers. The structures of FpGH31_19 complexed with d-galactose and α-(1→4)-galactobiose revealed that amino acid residues that recognize a galactose residue at subsite +1 are not conserved between FpGH31_19 and BsGH31_19. The tryptophan (Trp153) that recognizes galactose at subsite -1 is homologous to the tryptophan residues in MYORG and α-galactosidases belonging to GH27, GH36, and GH97, but not in the bacterial GH31 member PsGal31A. Our results provide structural insights into molecular diversity and evolutionary relationships in the GH31 α-galactosidase subfamilies and the other α-galactosidase families.


Assuntos
Glicosídeo Hidrolases , alfa-Galactosidase , Humanos , Glicosídeo Hidrolases/química , alfa-Galactosidase/genética , alfa-Galactosidase/química , alfa-Galactosidase/metabolismo , Galactose/metabolismo , Triptofano , Domínio Catalítico , Especificidade por Substrato , Cristalografia por Raios X
6.
J Biol Chem ; 299(7): 104885, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269952

RESUMO

Dextran is an α-(1→6)-glucan that is synthesized by some lactic acid bacteria, and branched dextran with α-(1→2)-, α-(1→3)-, and α-(1→4)-linkages are often produced. Although many dextranases are known to act on the α-(1→6)-linkage of dextran, few studies have functionally analyzed the proteins involved in degrading branched dextran. The mechanism by which bacteria utilize branched dextran is unknown. Earlier, we identified dextranase (FjDex31A) and kojibiose hydrolase (FjGH65A) in the dextran utilization locus (FjDexUL) of a soil Bacteroidota Flavobacterium johnsoniae and hypothesized that FjDexUL is involved in the degradation of α-(1→2)-branched dextran. In this study, we demonstrate that FjDexUL proteins recognize and degrade α-(1→2)- and α-(1→3)-branched dextrans produced by Leuconostoc citreum S-32 (S-32 α-glucan). The FjDexUL genes were significantly upregulated when S-32 α-glucan was the carbon source compared with α-glucooligosaccharides and α-glucans, such as linear dextran and branched α-glucan from L. citreum S-64. FjDexUL glycoside hydrolases synergistically degraded S-32 α-glucan. The crystal structure of FjGH66 shows that some sugar-binding subsites can accommodate α-(1→2)- and α-(1→3)-branches. The structure of FjGH65A in complex with isomaltose supports that FjGH65A acts on α-(1→2)-glucosyl isomaltooligosaccharides. Furthermore, two cell surface sugar-binding proteins (FjDusD and FjDusE) were characterized, and FjDusD showed an affinity for isomaltooligosaccharides and FjDusE for dextran, including linear and branched dextrans. Collectively, FjDexUL proteins are suggested to be involved in the degradation of α-(1→2)- and α-(1→3)-branched dextrans. Our results will be helpful in understanding the bacterial nutrient requirements and symbiotic relationships between bacteria at the molecular level.


Assuntos
Dextranos , Flavobacterium , Lactobacillales , Polissacarídeos Bacterianos , Dextranos/metabolismo , Glucanos/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Lactobacillales/metabolismo , Flavobacterium/metabolismo , Polissacarídeos Bacterianos/metabolismo
7.
Biotechnol J ; 18(8): e2300125, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37127933

RESUMO

Development of disposable, rapid, and convenient biosensor with high sensitivity and reliability is the most desired method of viral disease prevention. To achieve this goal, in this work, a practical impedimetric biosensor has been implemented into a disposable electrode on a screen-printed carbon electrode (SPCE) for the detection of two mosquito-borne viruses. The biosensor fabrication has step-wisely carried out on the disposable electrode surface at room temperature: starting from conductive film formation, physical binding of the gold nanoparticles (AuNPs)-polyaniline (PAni) into the conductive film, and biofunctionalization. To get the maximum efficiency of the antibody, biotinylated antibody has been conjugated on the surface of AuNP-PAni/PAni-SPCE via the streptavidin-biotin conjugation method which is a critical factor for the high sensitivity. Using the antibody-antigen interaction, this disposable electrode has designed to detect mosquito-borne infectious viruses, Chikungunya virus (CHIKV), and Zika virus (ZIKV) separately in a wide linear range of 100 fg mL-1 to 1 ng mL-1 with a low detection limit of 1.33 and 12.31 fg mL-1 , respectively.


Assuntos
Técnicas Biossensoriais , Vírus Chikungunya , Culicidae , Eletrodos , Zika virus , Animais , Técnicas Biossensoriais/instrumentação , Carbono/química , Culicidae/virologia , Ouro/química , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Zika virus/isolamento & purificação , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia , Doenças Transmitidas por Vetores/prevenção & controle , Doenças Transmitidas por Vetores/virologia , Vírus Chikungunya/isolamento & purificação , Febre de Chikungunya/prevenção & controle , Febre de Chikungunya/virologia , Limite de Detecção , Nanocompostos/química
8.
Microb Cell Fact ; 22(1): 105, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217979

RESUMO

BACKGROUND: Previously, we isolated a riboflavin-overproducing Ashbya gossypii mutant (MT strain) and discovered some mutations in genes encoding flavoproteins. Here, we analyzed the riboflavin production in the MT strain, in view of flavoproteins, which are localized in the mitochondria. RESULTS: In the MT strain, mitochondrial membrane potential was decreased compared with that in the wild type (WT) strain, resulting in increased reactive oxygen species. Additionally, diphenyleneiodonium (DPI), a universal flavoprotein inhibitor, inhibited riboflavin production in the WT and MT strains at 50 µM, indicating that some flavoproteins may be involved in riboflavin production. The specific activities of NADH and succinate dehydrogenases were significantly reduced in the MT strain, but those of glutathione reductase and acetohydroxyacid synthase were increased by 4.9- and 25-fold, respectively. By contrast, the expression of AgGLR1 gene encoding glutathione reductase was increased by 32-fold in the MT strain. However, that of AgILV2 gene encoding the catalytic subunit of acetohydroxyacid synthase was increased by only 2.1-fold. These results suggest that in the MT strain, acetohydroxyacid synthase, which catalyzes the first reaction of branched-chain amino acid biosynthesis, is vital for riboflavin production. The addition of valine, which is a feedback inhibitor of acetohydroxyacid synthase, to a minimal medium inhibited the growth of the MT strain and its riboflavin production. In addition, the addition of branched-chain amino acids enhanced the growth and riboflavin production in the MT strain. CONCLUSION: The significance of branched-chain amino acids for riboflavin production in A. gossypii is reported and this study opens a novel approach for the effective production of riboflavin in A. gossypii.


Assuntos
Acetolactato Sintase , Eremothecium , Flavoproteínas , Mutação , Riboflavina , Riboflavina/biossíntese , Riboflavina/metabolismo , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Eremothecium/efeitos dos fármacos , Eremothecium/enzimologia , Eremothecium/genética , Eremothecium/crescimento & desenvolvimento , Eremothecium/metabolismo , Flavoproteínas/genética , Flavoproteínas/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aminoácidos de Cadeia Ramificada/farmacologia
9.
Front Bioeng Biotechnol ; 11: 1096363, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873345

RESUMO

Recent progress has been made dramatically in decorating virus-like particles (VLPs) on the surface or inside with functional molecules, such as antigens or nucleic acids. However, it is still challenging to display multiple antigens on the surface of VLP to meet the requirement as a practical vaccine candidate. Herein this study, we focus on the expression and engineering of the capsid protein VP2 of canine parvovirus for VLP display in the silkworm-expression system. The chemistry of the SpyTag/SpyCatcher (SpT/SpC) and SnoopTag/SnoopCatcher (SnT/SnC) are efficient protein covalent ligation systems to modify VP2 genetically, where SpyTag/SnoopTag are inserted into the N-terminus or two distinct loop regions (Lx and L2) of VP2. The SpC-EGFP and SnC-mCherry are employed as model proteins to evaluate their binding and display on six SnT/SnC-modified VP2 variants. From a series of protein binding assays between indicated protein partners, we showed that the VP2 variant with SpT inserted at the L2 region significantly enhanced VLP display to 80% compared to 5.4% from N-terminal SpT-fused VP2-derived VLPs. In contrast, the VP2 variant with SpT at the Lx region failed to form VLPs. Moreover, the SpT (Lx)/SnT (L2) double-engineered chimeric VP2 variants showed covalent conjugation capacity to both SpC/SnC protein partners. The orthogonal ligations between those binding partners were confirmed by both mixing purified proteins and co-infecting cultured silkworm cells or larvae with desired recombinant viruses. Our results indicate that a convenient VLP display platform was successfully developed for multiple antigen displays on demand. Further verifications can be performed to assess its capacity for displaying desirable antigens and inducing a robust immune response to targeted pathogens.

10.
Mikrochim Acta ; 190(1): 46, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36604350

RESUMO

The design and construction of a visible light-driven photoelectrochemical (PEC) device is described based on a CdSe-Co3O4@TiO2 nanoflower (NF). Moreover, an application to the ultrasensitive detection of viruses, such as hepatitis E virus (HEV), HEV-like particles (HEV-LPs), and SARS-CoV-2 spike protein in complicated lysate solution, is demonstrated. The photocurrent response output of a PEC device based on CdSe-Co3O4@TiO2 is enhanced compared with the individual components, TiO2 and CdSe-Co3O4. This can be attributed to the CdSe quantum dot (QD) sensitization effect and strong visible light absorption to improve overall system stability. A robust oxygen-evolving catalyst (Co3O4) coupled at the hole-trapping site (CdSe) extends the interfacial carrier lifetime, and the energy conversion efficiency was improved. The effective hybridization between the antibody and virus resulted in a linear relationship between the change in photocurrent density and the HEV-LP concentration ranging from 10 fg mL-1 to 10 ng mL-1, with a detection limit of 3.5 fg mL-1. This CdSe-Co3O4@TiO2-based PEC device achieved considerable sensitivity, good specificity, and acceptable stability and demonstrated a significant ability to develop an upgraded device with affordable and portable biosensing capabilities.


Assuntos
COVID-19 , Compostos de Cádmio , Compostos de Selênio , Humanos , Luz , SARS-CoV-2 , Nanoestruturas
11.
Biomacromolecules ; 24(1): 308-318, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36475654

RESUMO

Genetic fusion and chemical conjugation are the most common approaches for displaying a foreign protein on the surface of virus-like particles (VLPs); however, these methods may negatively affect the formation and stability of VLPs. Here, we aimed to develop a modular display platform for protein decoration on norovirus-like particles (NoV-LPs) by combining the NoV-LP scaffold with the SpyTag/SpyCatcher bioconjugation system, as the NoV-LP is an attractive protein nanoparticle to carry foreign proteins for various applications. The SpyTagged-NoV-LPs were prepared by introducing SpyTag peptide into the C-terminus of the norovirus VP1 protein. To increase surface exposure of the SpyTag peptide on the NoV-LPs, two or three repeated extension linkers (EAAAK) were inserted between the SpyTag peptide and VP1 protein. Fluorescence proteins, EGFP and mCherry, were fused to SpyCatcher and employed as SpyTag conjugation partners. These VP1-SpyTag variants and SpyCatcher-fused EGFP and mCherry were separately expressed in silkworm fat bodies and purified. This study reveals that adding an extension linker did not disrupt the VLP formation; instead, it increased the particle size by 4-6 nm. The conjugation efficiency of the VP1-SpyTag variants with the extended linker improved from ∼15-35 to ∼50-63% based on the densitometric analysis, while it was up to 77% based on an optical quantification of EGFP and mCherry. Results indicate that the linker causes the SpyTag peptides to be positioned further away from the C-termini of VP1 and potentially increases the exposure of the SpyTag to the outer surface of the NoV-LPs, allowing more SpyTag/SpyCatcher complex formation on the VLP surface. Our study provides a strategy for enhancing the conjugation efficiency of NoV-LP and demonstrates the platform's utility for developing vaccines or functional nanoparticles.


Assuntos
Lipopolissacarídeos , Proteínas
12.
Mol Biotechnol ; 65(3): 401-409, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35963985

RESUMO

In this study, silkworm larvae were used for expression of porcine rotavirus A (KS14 strain) inner capsid protein, VP6, and outer capsid protein, VP7. Initially, VP6 was fused with Strep-tag II and FLAG-tag (T-VP6), and T-VP6 was fused further with the signal peptide of Bombyx mori 30k6G protein (30k-T-VP6). T-VP6 and 30 k-T-VP6 were then expressed in the fat body and hemolymph of silkworm larvae, respectively, with respective amounts of 330 µg and 50 µg per larva of purified protein. Unlike T-VP6, 30k-T-VP6 was N-glycosylated due to attached signal peptide. Also, VP7 was fused with PA-tag (VP7-PA). Additionally, VP7 was fused with Strep-tag II, FLAG-tag, and the signal peptide of Bombyx mori 30k6G protein (30k-T-ΔVP7). Both VP7-PA and 30k-T-ΔVP7 were expressed in the hemolymph of silkworm larvae, with respective amounts of 26 µg and 49 µg per larva of purified protein, respectively. The results from our study demonstrated that T-VP6 formed nanoparticles of greater diameter compared with the ones formed by 30k-T-VP6. Also, higher amount of VP6 expressed in silkworm larvae reveal that VP6 holds the potential for its use in vaccine development against porcine rotavirus with silkworm larvae as a promising host for the production of such multi-subunit vaccines.


Assuntos
Bombyx , Rotavirus , Vacinas , Animais , Suínos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Bombyx/metabolismo , Larva/genética , Larva/metabolismo , Rotavirus/genética , Sinais Direcionadores de Proteínas , Antígenos Virais/metabolismo
13.
Electrophoresis ; 43(23-24): 2402-2427, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36285667

RESUMO

Nucleic acids are the blueprint of life. They are not only the construction plan of the single cell or higher associations of them, but also necessary for function, communication and regulation. Due to the pandemic, the attention shifted in particular to their therapeutic potential as a vaccine. As pharmaceutical oligonucleotides are unique in terms of their stability and application, special delivery systems were also considered. Oligonucleotide production systems can vary and depend on the feasibility, availability, price and intended application. To achieve good purity, reliable results and match the strict specifications in the pharmaceutical industry, the separation of oligonucleotides is always essential. Besides the separation required for production, additional and specifically different separation techniques are needed for analysis to determine if the product complies with the designated specifications. After a short introduction to ribonucleic acids (RNAs), messenger RNA vaccines, and their production and delivery systems, an overview regarding separation techniques will be provided. This not only emphasises electrophoretic separations but also includes spin columns, extractions, precipitations, magnetic nanoparticles and several chromatographic separation principles, such as ion exchange chromatography, ion-pair reversed-phase, size exclusion and affinity.


Assuntos
Ácidos Nucleicos , Oligonucleotídeos , Oligonucleotídeos/análise , Cromatografia por Troca Iônica/métodos , Cromatografia Líquida de Alta Pressão/métodos , Preparações Farmacêuticas
14.
Nanoscale Adv ; 4(3): 871-883, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36131829

RESUMO

The global pandemic of COVID-19 is an example of how quickly a disease-causing virus can take root and threaten our civilization. Nowadays, ultrasensitive and rapid detection of contagious pathogens is in high demand. Here, we present a novel hierarchically porous 3-dimensional magnetic molybdenum trioxide-polydopamine-gold functionalized nanosphere (3D mag-MoO3-PDA@Au NS) composed of plasmonic, semiconductor, and magnetic nanoparticles as a multifunctional nanosculptured hybrid. Based on the synthesized 3D mag-MoO3-PDA@Au NS, a universal "plug and play" biosensor for pathogens is proposed. Specifically, a magnetically-induced nanogap-enhanced Raman scattering (MINERS) detection platform was developed using the 3D nanostructure. Through a magnetic actuation process, the MINERS system overcomes Raman signal stability and reproducibility challenges for the ultrasensitive detection of SARS-CoV-2 spike protein over a wide dynamic range up to a detection limit of 10-15 g mL-1. The proposed MINERS platform will facilitate the broader use of Raman spectroscopy as a powerful analytical detection tool in diverse fields.

15.
Glycobiology ; 32(12): 1153-1163, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36106687

RESUMO

N-glycans are modified by glycosyltransferases in the endoplasmic reticulum and Golgi apparatus. N-acetylglucosaminyltransferase IV (GnT-IV) is a Golgi-localized glycosyltransferase that synthesizes complex-type N-glycans in vertebrates. This enzyme attaches N-acetylglucosamine (GlcNAc) to the α-1,3-linked mannose branch of the N-glycan core structure via a ß-1,4 linkage. Deficiency of this enzyme is known to cause abnormal cellular functions, making it a vital enzyme for living organisms. However, there has been no report on its 3-dimensional structure to date. Here, we demonstrated that the C-terminal regions (named CBML) of human GnT-IVa and Bombyx mori ortholog have the ability to bind ß-N-acetylglucosamine. In addition, we determined the crystal structures of human CBML, B. mori CBML, and its complex with ß-GlcNAc at 1.97, 1.47, and 1.15 Å resolutions, respectively, and showed that they adopt a ß-sandwich fold, similar to carbohydrate-binding module family 32 (CBM32) proteins. The regions homologous to CBML (≥24% identity) were found in GnT-IV isozymes, GnT-IVb, and GnT-IVc (known as GnT-VI), and the structure of B. mori CBML in complex with ß-GlcNAc indicated that the GlcNAc-binding residues were highly conserved among these isozymes. These residues are also conserved with the GlcNAc-binding CBM32 domain of ß-N-acetylhexosaminidase NagH from Clostridium perfringens despite the low sequence identity (<20%). Taken together with the phylogenetic analysis, these findings indicate that these CBMLs may be novel CBM family proteins with GlcNAc-binding ability.


Assuntos
Acetilglucosamina , Isoenzimas , Animais , Humanos , Acetilglucosamina/metabolismo , Isoenzimas/metabolismo , Filogenia , N-Acetilglucosaminiltransferases/genética , Glicosiltransferases/metabolismo , Polissacarídeos/química , Manose/química
16.
Arch Insect Biochem Physiol ; 111(4): e21968, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36116100

RESUMO

Cordyceps militaris is an entomopathogenic fungus that forms its fruiting body. The gene expression change in C. militaris and silkworm larvae were analyzed using RNA-seq to investigate the relationship of C. militaris with the host, silkworm larvae before the death by mycosis. At 144 h after the injection of C. militaris conidia, genes encoding proteases, protease inhibitors, and cuticle proteins in the fat body of silkworm larvae were upregulated, but genes encoding lipoproteins and other proteins in hemolymph were downregulated. On the other hand, at 168 h after the injection of C. militaris conidia, genes encoding amino acid and oligopeptide transporters and permeases in C. militaris were upregulated, suggesting that C. militaris may use peptides and amino acids in silkworm larvae as a nutrient to grow in vivo. Additionally, one gene cluster composed of genes putatively involved in the degradation of phenolic substrates was also upregulated. The addition of 4,5-dichlorocatechol, an inhibitor of catechol 1,2-dioxygenase, inhibited the in vivo growth of C. militaris, Beauveria bassiana and Metarhizium anisopliae. These results also suggest that the expression of the gene cluster may be crucial for the in vivo growth of C. militaris and entomopathogenic fungi. This study will clarify how C. militaris grows in insect hosts by avoiding host's immune systems.


Assuntos
Beauveria , Bombyx , Cordyceps , Animais , Cordyceps/genética , Cordyceps/metabolismo , Bombyx/genética , Larva/genética , Larva/microbiologia , Beauveria/genética , Esporos Fúngicos , Expressão Gênica
17.
Biosens Bioelectron ; 215: 114602, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35940003

RESUMO

A facile and general strategy has been employed to develop highly-active nanozyme for immunoassay purposes. The hollow nanostructure of the Co3O4 nanocages (NCs) was anchoring the platinum nanoparticles (PtNPs) enclosed by the exposed oxides framework nd formed PtNPs@Co3O4 NCs. The embodiment of PtNPs was considered an ideal hybrid nanozyme that efficiently catalyzed the oxidation of the substrate molecules with enhanced activity. The PtNPs@Co3O4 NCs were revisited and repurposed on showing its nanozyme's activity with optimization done for the immunoassay platform. The embodiment of 32.44% Pt in the hollow nanostructures demonstrated the highest signal-to-noise responses in the immunoassay. In addition, the stepwise analysis highlighted the enhancement factor of the nanocages' catalytic mechanism. Based on their catalytic activity, these nanocages have been demonstrated to enable sub-femtogram level biosensing of norovirus-like particles (NoV-LPs) with highly selective signals in the capture-detect immunoassay format. The detection limit of the prepared immunoassay achieved 33.52 viral NoV copies/mL of the detection limit, which is 321-folds lower magnitude of the commercial ELISA. This nanocage's enhanced synergic catalytic properties could have great potential applications, including catalysis, biological labeling, and bioassays.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Cobalto , Imunoensaio , Nanopartículas Metálicas/química , Óxidos , Platina/química
18.
Fish Shellfish Immunol ; 128: 157-167, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35917887

RESUMO

White spot syndrome virus (WSSV) is one of the most concerning pathogens in penaeid shrimp and can cause severe loss in shrimp aquaculture worldwide. Among the WSSV structural proteins, VP15, a DNA-binding protein located in the WSSV nucleocapsid, is an antiviral protein candidate to protect kuruma shrimp (Marsupenaeus japonicus) from WSSV infection. We identified that the truncated VP15, VP15(26-57), is responsible for the protective effect against the WSSV. This study attempts to develop an immunizing agent against WSSV using silkworm pupa as a delivery vector through oral administration. The VP15, VP15(26-57), and SR11 peptide derived from VP15(26-57) were expressed in silkworm pupae. Oral administration of feed mixed with the powdered pupae that expressed VP15-derived constructs enhanced the survivability of kuruma shrimp with an overall relative percent survival (RPS) higher than 70%. There is no death for the group receiving pupa/VP15(26-57), and the RPS is 100%. In addition, we also investigated the relative mRNA expression levels of immune-related genes by qPCR at different time points. Our results indicate that the oral administration of pupa/VP15-derived products could provide a high protective effect against WSSV and be a practical approach for controlling WSSV in aquaculture.


Assuntos
Bombyx , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Administração Oral , Animais , Antivirais/metabolismo , Bombyx/genética , Proteínas de Ligação a DNA/metabolismo , Imunização , Peptídeos/metabolismo , Pupa , RNA Mensageiro/metabolismo , Vírus da Síndrome da Mancha Branca 1/fisiologia
19.
Biosci Rep ; 42(6)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35642592

RESUMO

Baculovirus expression vector system (BEVS) has been recognized as a potent protein expression system in engineering valuable enzymes and vaccines. Various fusion tags facilitate protein purification, leaving the potential risk to influence the target protein's biological activity negatively. It is of great interest to consider removing the additional tags using site-specific proteases, such as human rhinoviruses (HRV) 3C protease. The current study validated the cleavage activity of 3C protease in Escherichia coli and silkworm-BEVS systems by mixing the cell or fat body lysates of 3C protein and 3C site containing target protein in vitro. Further verification has been performed in the fat body lysate from co-expression of both constructs, showing remarkable cleavage efficiency in vivo silkworm larvae. We also achieved the glutathione-S-transferase (GST) tag-cleaved product of the VP15 protein from the White spot syndrome virus after purification, suggesting that we successfully established a coinfection-based recognition-and-reaction BEVS platform for the tag-free protein engineering.


Assuntos
Bombyx , Proteases Virais 3C , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Bombyx/genética , Bombyx/metabolismo , Cisteína Endopeptidases/metabolismo , Digestão , Escherichia coli/genética , Escherichia coli/metabolismo , Frequência Cardíaca , Humanos , Proteínas Virais/metabolismo
20.
Protein Expr Purif ; 197: 106106, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35525404

RESUMO

Rous sarcoma virus-like particles (RSV-LPs) displaying hemagglutinins of H1N1 (A/New Caledonia/20/99) (H1) and H5N1 (A/Vietnam/1194/2004) (H5) of the influenza A virus were produced. The H1 has its transmembrane domain, but the H5 was fused with the transmembrane domain of glycoprotein 64 (BmGP64) from Bombyx mori nucleopolyhedrovirus (BmNPV). H1 and RSV Gag protein were coexpressed in the hemolymph of silkworm larvae, copurified, and confirmed RSV-LP displaying H1 (VLP/H1). Similarly, the RSV-LP displaying H5 (VLP/H5) production was also achieved. Using fetuin agarose column chromatography, RSV Gag protein-coexpressed H1 and H5 in silkworms were copurified from the hemolymph. By immuno-TEM, H1 and H5 were observed on the surface of an RSV-LP, indicating the formation of bivalent RSV-LP displaying two HAs (VLP/BivHA) in the hemolymph of silkworm larvae. VLP/H1 induced the hemagglutination of red blood cells (RBCs) of chicken and rabbit but not sheep, while VLP/H5 induced the hemagglutination of RBCs of chicken and sheep but not rabbit. Additionally, VLP/BivHA allowed the hemagglutination of RBCs of all three animals. Silkworm larvae can produce RSV-LPs displaying two HAs and is a promising tool to produce the bivalent enveloped VLPs for the vaccine platform.


Assuntos
Bombyx , Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Vacinas de Partículas Semelhantes a Vírus , Animais , Bombyx/genética , Bombyx/metabolismo , Produtos do Gene gag/metabolismo , Hemaglutininas/genética , Hemaglutininas/metabolismo , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/metabolismo , Larva/genética , Larva/metabolismo , Lipopolissacarídeos , Coelhos , Ovinos , Vacinas de Partículas Semelhantes a Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA