Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
ACS Pharmacol Transl Sci ; 7(4): 1023-1031, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633588

RESUMO

The unique structure and beneficial biological properties of marine natural products have drawn interest in drug development. Here, we examined the therapeutic potential of napyradiomycin B4 isolated from marine-derived Streptomyces species for osteoclast-related skeletal diseases. Bone marrow-derived macrophages were treated with napyradiomycin B4 in an osteoclast-inducing medium, and osteoclast formation, osteoclast-specific gene expression, and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) localization were evaluated using tartrate-resistant acid phosphatase staining, real-time PCR, and immunostaining, respectively. Phosphorylation levels of signaling proteins were assessed by immunoblot analysis to understand the molecular action of napyradiomycin B4. The in vivo efficacy of napyradiomycin B4 was examined under experimental periodontitis, and alveolar bone destruction was evaluated by microcomputed tomography (micro-CT) and histological analyses. Among the eight napyradiomycin derivatives screened, napyradiomycin B4 considerably inhibited osteoclastogenesis. Napyradiomycin B4 significantly suppressed the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation and disrupted the expression of NFATc1 and its target genes. Mitogen-activated extracellular signal-regulated kinase (MEK) and extracellular signal-regulated kinase (ERK) phosphorylation levels were reduced by napyradiomycin B4 in response to RANKL. Under in vivo experimental periodontitis, napyradiomycin B4 significantly attenuated osteoclast formation and decreased the distance between the cementoenamel junction and alveolar bone crest. Our findings demonstrate the antiosteoclastogenic activity of napyradiomycin B4 by inhibiting the RANKL-induced MEK-ERK signaling pathway and its protective effect on alveolar bone destruction.

2.
Front Mol Neurosci ; 17: 1344141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638601

RESUMO

Cognitive aging widely varies among individuals due to different stress experiences throughout the lifespan and vulnerability of neurocognitive mechanisms. To understand the heterogeneity of cognitive aging, we investigated the effect of early adulthood stress (EAS) on three different hippocampus-dependent memory tasks: the novel object recognition test (assessing recognition memory: RM), the paired association test (assessing episodic-like memory: EM), and trace fear conditioning (assessing trace memory: TM). Two-month-old rats were exposed to chronic mild stress for 6 weeks and underwent behavioral testing either 2 weeks or 20 months later. The results show that stress and aging impaired different types of memory tasks to varying degrees. RM is affected by combined effect of stress and aging. EM became less precise in EAS animals. TM, especially the contextual memory, showed impairment in aging although EAS attenuated the aging effect, perhaps due to its engagement in emotional memory systems. To further explore the neural underpinnings of these multi-faceted effects, we measured long-term potentiation (LTP), neural density, and synaptic density in the dentate gyrus (DG). Both stress and aging reduced LTP. Additionally, the synaptic density per neuron showed a further reduction in the stress aged group. In summary, EAS modulates different forms of memory functions perhaps due to their substantial or partial dependence on the functional integrity of the hippocampus. The current results suggest that lasting alterations in hippocampal circuits following EAS could potentially generate remote effects on individual variability in cognitive aging, as demonstrated by performance in multiple types of memory.

3.
Science ; 383(6686): eabm9903, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422126

RESUMO

All living organisms deploy cell-autonomous defenses to combat infection. In plants and animals, large supramolecular complexes often activate immune proteins for protection. In this work, we resolved the native structure of a massive host-defense complex that polymerizes 30,000 guanylate-binding proteins (GBPs) over the surface of gram-negative bacteria inside human cells. Construction of this giant nanomachine took several minutes and remained stable for hours, required guanosine triphosphate hydrolysis, and recruited four GBPs plus caspase-4 and Gasdermin D as a cytokine and cell death immune signaling platform. Cryo-electron tomography suggests that GBP1 can adopt an extended conformation for bacterial membrane insertion to establish this platform, triggering lipopolysaccharide release that activated coassembled caspase-4. Our "open conformer" model provides a dynamic view into how the human GBP1 defense complex mobilizes innate immunity to infection.


Assuntos
Bactérias , Infecções Bacterianas , Membrana Celular , Proteínas de Ligação ao GTP , Reconhecimento da Imunidade Inata , Humanos , Citocinas/química , Tomografia com Microscopia Eletrônica , Proteínas de Ligação ao GTP/química , Guanosina Trifosfato/química , Hidrólise , Imunidade Celular , Microscopia Crioeletrônica , Gasderminas/química , Proteínas de Ligação a Fosfato/química , Conformação Proteica , Membrana Celular/química , Membrana Celular/imunologia , Caspases Iniciadoras/química , Infecções Bacterianas/imunologia , Bactérias/imunologia
4.
Mol Med Rep ; 28(5)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37732549

RESUMO

Wear particle­induced osteolysis is a serious complication that occurs in individuals with titanium (Ti)­based implants following long­term usage due to loosening of the implants. The control of excessive osteoclast differentiation and inflammation is essential for protecting against wear particle­induced osteolysis. The present study evaluated the effect of britanin, a pseudoguaianolide sesquiterpene isolated from Inula japonica, on osteoclastogenesis in vitro and Ti particle­induced osteolysis in vivo. The effect of britanin was examined in the osteoclastogenesis of mouse bone marrow­derived macrophages (BMMs) using TRAP staining, RT­PCR, western blotting and immunocytochemistry. The protective effect of britanin was examined in a mouse calvarial osteolysis model and evaluated using micro­CT and histomorphometry. Britanin inhibited osteoclast differentiation and F­actin ring formation in the presence of macrophage colony­stimulating factor and receptor activator of nuclear factor kB ligand in BMMs. The expression of osteoclast­specific marker genes, including tartrate­resistant acid phosphatase, cathepsin K, dendritic cell­specific transmembrane protein, matrix metallopeptidase 9 and nuclear factor of activated T­cells cytoplasmic 1, in the BMMs was significantly reduced by britanin. In addition, britanin reduced the expression of B lymphocyte­induced maturation protein­1, which is a transcriptional repressor of negative osteoclastogenesis regulators, including interferon regulatory factor­8 and B­cell lymphoma 6. Conversely, britanin increased the expression levels of anti­oxidative stress genes, namely nuclear factor erythroid­2­related factor 2, NAD(P)H quinone oxidoreductase 1 and heme oxygenase 1 in the BMMs. Furthermore, the administration of britanin significantly reduced osteolysis in a Ti particle­induced calvarial osteolysis mouse model. Based on these findings, it is suggested that britanin may be a potential therapeutic agent for wear particle­induced osteolysis and osteoclast­associated disease.


Assuntos
Osteogênese , Osteólise , Humanos , Animais , Camundongos , Osteólise/tratamento farmacológico , Osteólise/etiologia , Titânio/efeitos adversos , Osteoclastos , Citoesqueleto de Actina , Modelos Animais de Doenças
5.
Osteoarthritis Cartilage ; 31(12): 1567-1580, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37544583

RESUMO

OBJECTIVE: TissueGene-C (TG-C), a combination of human allogeneic chondrocytes and irradiated GP2-293 cells engineered to overexpress transforming growth factor-ß1 (TGF-ß1), has been developed as a novel cell-based gene therapy and a candidate for disease modifying osteoarthritis drug (DMOAD). We aim to investigate analgesic mechanism of TG-C in a pre-clinical animal model with monoiodoacetate (MIA)-induced pain. DESIGN: We used a rat MIA model of osteoarthritis (OA) pain. We examined that TG-C can regulate pain by inhibiting the upregulation of various pain mediators in both knee joint tissue and dorsal root ganglia (DRG) (n = 112) and alleviating pain behavior (n = 41) and neuronal hyperexcitability in DRG (n = 60), afferent nerve fiber (n = 24), and spinal cord (n = 35). RESULTS: TG-C significantly alleviated pain-related behavior by restoring altered dynamic weight bearing and reduced mechanical threshold of the affected hindlimb. TG-C significantly suppressed the expression of nerve growth factor (NGF) and calcitonin gene-related peptide (CGRP) in inflamed joint tissue. TG-C significantly suppressed the upregulation of tropomyosin receptor kinase A (TrkA) and nerve injury/regeneration protein (GAP43) and activation of Iba1-positive microglial cells in DRG. TG-C significantly recovered neuronal hyperexcitability by restoring RMP and firing threshold and frequency of DRG neurons, attenuating firing rates of mechanosensitive C- or Aδ-nerve fiber innervating knee joint, and lowering increased miniature and evoked excitatory postsynaptic currents (mEPSCs and eEPSCs) in the spinal cord. CONCLUSION: Our results demonstrated that TG-C exerted potent analgesic effects in a rat MIA model of OA pain by inhibiting the upregulation of pain mediators and modulating neuronal sensitization.


Assuntos
Osteoartrite , Dor , Ratos , Humanos , Animais , Ratos Sprague-Dawley , Dor/metabolismo , Osteoartrite/terapia , Osteoartrite/tratamento farmacológico , Analgésicos/uso terapêutico , Neurônios/metabolismo , Gânglios Espinais/metabolismo , Modelos Animais de Doenças
7.
Nature ; 619(7971): 819-827, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438530

RESUMO

Understanding protective immunity to COVID-19 facilitates preparedness for future pandemics and combats new SARS-CoV-2 variants emerging in the human population. Neutralizing antibodies have been widely studied; however, on the basis of large-scale exome sequencing of protected versus severely ill patients with COVID-19, local cell-autonomous defence is also crucial1-4. Here we identify phospholipid scramblase 1 (PLSCR1) as a potent cell-autonomous restriction factor against live SARS-CoV-2 infection in parallel genome-wide CRISPR-Cas9 screens of human lung epithelia and hepatocytes before and after stimulation with interferon-γ (IFNγ). IFNγ-induced PLSCR1 not only restricted SARS-CoV-2 USA-WA1/2020, but was also effective against the Delta B.1.617.2 and Omicron BA.1 lineages. Its robust activity extended to other highly pathogenic coronaviruses, was functionally conserved in bats and mice, and interfered with the uptake of SARS-CoV-2 in both the endocytic and the TMPRSS2-dependent fusion routes. Whole-cell 4Pi single-molecule switching nanoscopy together with bipartite nano-reporter assays found that PLSCR1 directly targeted SARS-CoV-2-containing vesicles to prevent spike-mediated fusion and viral escape. A PLSCR1 C-terminal ß-barrel domain-but not lipid scramblase activity-was essential for this fusogenic blockade. Our mechanistic studies, together with reports that COVID-associated PLSCR1 mutations are found in some susceptible people3,4, identify an anti-coronavirus protein that interferes at a late entry step before viral RNA is released into the host-cell cytosol.


Assuntos
COVID-19 , Proteínas de Transferência de Fosfolipídeos , SARS-CoV-2 , Animais , Humanos , Camundongos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Quirópteros , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/prevenção & controle , COVID-19/virologia , Sequenciamento do Exoma , Hepatócitos/imunologia , Hepatócitos/metabolismo , Interferon gama/imunologia , Pulmão/imunologia , Pulmão/metabolismo , Fusão de Membrana , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/imunologia , Proteínas de Transferência de Fosfolipídeos/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Internalização do Vírus
8.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373367

RESUMO

Bee venom is a traditional drug used to treat the nervous system, musculoskeletal system, and autoimmune diseases. A previous study found that bee venom and one of its components, phospholipase A2, can protect the brain by suppressing neuroinflammation and can also be used to treat Alzheimer's disease. Thus, new composition bee venom (NCBV), which has an increased phospholipase A2 content of up to 76.2%, was developed as a treatment agent for Alzheimer's disease by INISTst (Republic of Korea). The aim of this study was to characterize the pharmacokinetic profiles of phospholipase A2 contained in NCBV in rats. Single subcutaneous administration of NCBV at doses ranging from 0.2 mg/kg to 5 mg/kg was conducted, and pharmacokinetic parameters of bee venom-derived phospholipase A2 (bvPLA2) increased in a dose-dependent manner. Additionally, no accumulation was observed following multiple dosings (0.5 mg/kg/week), and other constituents of NCBV did not affect the pharmacokinetic profile of bvPLA2. After subcutaneous injection of NCBV, the tissue-to-plasma ratios of bvPLA2 for the tested nine tissues were all <1.0, indicating a limited distribution of the bvPLA2 within the tissues. The findings of this study may help understand the pharmacokinetic characteristics of bvPLA2 and provide useful information for the clinical application of NCBV.


Assuntos
Doença de Alzheimer , Venenos de Abelha , Fosfolipases A2 , Animais , Ratos , Doença de Alzheimer/tratamento farmacológico , Venenos de Abelha/enzimologia , Injeções Subcutâneas , Fosfolipases A2/uso terapêutico , Distribuição Tecidual
9.
EMBO J ; 42(13): e111867, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37203866

RESUMO

Tight regulation of Toll-like receptor (TLR)-mediated inflammatory responses is important for innate immunity. Here, we show that T-cell death-associated gene 51 (TDAG51/PHLDA1) is a novel regulator of the transcription factor FoxO1, regulating inflammatory mediator production in the lipopolysaccharide (LPS)-induced inflammatory response. TDAG51 induction by LPS stimulation was mediated by the TLR2/4 signaling pathway in bone marrow-derived macrophages (BMMs). LPS-induced inflammatory mediator production was significantly decreased in TDAG51-deficient BMMs. In TDAG51-deficient mice, LPS- or pathogenic Escherichia coli infection-induced lethal shock was reduced by decreasing serum proinflammatory cytokine levels. The recruitment of 14-3-3ζ to FoxO1 was competitively inhibited by the TDAG51-FoxO1 interaction, leading to blockade of FoxO1 cytoplasmic translocation and thereby strengthening FoxO1 nuclear accumulation. TDAG51/FoxO1 double-deficient BMMs showed significantly reduced inflammatory mediator production compared with TDAG51- or FoxO1-deficient BMMs. TDAG51/FoxO1 double deficiency protected mice against LPS- or pathogenic E. coli infection-induced lethal shock by weakening the systemic inflammatory response. Thus, these results indicate that TDAG51 acts as a regulator of the transcription factor FoxO1, leading to strengthened FoxO1 activity in the LPS-induced inflammatory response.


Assuntos
Escherichia coli , Lipopolissacarídeos , Camundongos , Animais , Proteínas 14-3-3 , Fatores de Transcrição/genética , Mediadores da Inflamação
10.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175910

RESUMO

With the increasing accessibility of cannabis (Cannabis sativa L., also known as marijuana and hemp), its products are being developed as extracts for both recreational and therapeutic use. This has led to increased scrutiny by regulatory bodies, who aim to understand and regulate the complex chemistry of these products to ensure their safety and efficacy. Regulators use targeted analyses to track the concentration of key bioactive metabolites and potentially harmful contaminants, such as metals and other impurities. However, the metabolic complexity of cannabis metabolic pathways requires a more comprehensive approach. A non-targeted metabolomic analysis of cannabis products is necessary to generate data that can be used to determine their authenticity and efficacy. An authentomics approach, which involves combining the non-targeted analysis of new samples with big data comparisons to authenticated historic datasets, provides a robust method for verifying the quality of cannabis products. To meet International Organization for Standardization (ISO) standards, it is necessary to implement the authentomics platform technology and build an integrated database of cannabis analytical results. This study is the first to review the topic of the authentomics of cannabis and its potential to meet ISO standards.


Assuntos
Cannabis , Big Data
11.
J Cell Physiol ; 238(5): 1006-1019, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36870066

RESUMO

The engulfment adaptor phosphotyrosine-binding domain containing 1 (GULP1) is an adaptor protein involved in the engulfment of apoptotic cells via phagocytosis. Gulp1 was first found to promote the phagocytosis of apoptotic cells by macrophages, and its role in various tissues, including neurons and ovaries, has been well studied. However, the expression and function of GULP1 in bone tissue are poorly understood. Consequently, to determine whether GULP1 plays a role in the regulation of bone remodeling in vitro and in vivo, we generated Gulp1 knockout (KO) mice. Gulp1 was expressed in bone tissue, mainly in osteoblasts, while its expression is very low in osteoclasts. Microcomputed tomography and histomorphometry analysis in 8-week-old male Gulp1 KO mice revealed a high bone mass in comparison with male wild-type (WT) mice. This was a result of decreased osteoclast differentiation and function in vivo and in vitro as confirmed by a reduced actin ring and microtubule formation in osteoclasts. Gas chromatography-mass spectrometry analysis further showed that both 17ß-estradiol (E2) and 2-hydroxyestradiol levels, and the E2/testosterone metabolic ratio, reflecting aromatase activity, were also higher in the bone marrow of male Gulp1 KO mice than in male WT mice. Consistent with mass spectrometry analysis, aromatase enzymatic activity was significantly higher in the bone marrow of male Gulp1 KO mice. Altogether, our results suggest that GULP1 deficiency decreases the differentiation and function of osteoclasts themselves and increases sex steroid hormone-mediated inhibition of osteoclast differentiation and function, rather than affecting osteoblasts, resulting in a high bone mass in male mice. To the best of our knowledge, this is the first study to explore the direct and indirect roles of GULP1 in bone remodeling, providing new insights into its regulation.


Assuntos
Aromatase , Estradiol , Osteoclastos , Animais , Masculino , Camundongos , Aromatase/genética , Aromatase/metabolismo , Osso e Ossos , Diferenciação Celular , Camundongos Knockout , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Microtomografia por Raio-X , Estradiol/metabolismo
12.
Int J Mol Sci ; 24(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36902409

RESUMO

Particulate matter (PM) is a mixture comprising both organic and inorganic particles, both of which are hazardous to health. The inhalation of airborne PM with a diameter of ≤2.5 µm (PM2.5) can cause considerable lung damage. Cornuside (CN), a natural bisiridoid glucoside derived from the fruit of Cornus officinalis Sieb, exerts protective properties against tissue damage via controlling the immunological response and reducing inflammation. However, information regarding the therapeutic potential of CN in patients with PM2.5-induced lung injury is limited. Thus, herein, we examined the protective properties of CN against PM2.5-induced lung damage. Mice were categorized into eight groups (n = 10): a mock control group, a CN control group (0.8 mg/kg mouse body weight), four PM2.5+CN groups (0.2, 0.4, 0.6, and 0.8 mg/kg mouse body weight), and a PM2.5+CN group (0.2, 0.4, 0.6, and 0.8 mg/kg mouse body weight). The mice were administered with CN 30 min following intratracheal tail vein injection of PM2.5. In mice exposed to PM2.5, different parameters including changes in lung tissue wet/dry (W/D) lung weight ratio, total protein/total cell ratio, lymphocyte counts, inflammatory cytokine levels in the bronchoalveolar lavage fluid (BALF), vascular permeability, and histology were examined. Our findings revealed that CN reduced lung damage, the W/D weight ratio, and hyperpermeability caused by PM2.5. Moreover, CN reduced the plasma levels of inflammatory cytokines produced because of PM2.5 exposure, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and nitric oxide, as well as the total protein concentration in the BALF, and successfully attenuated PM2.5-associated lymphocytosis. In addition, CN substantially reduced the expression levels of Toll-like receptors 4 (TLR4), MyD88, and autophagy-related proteins LC3 II and Beclin 1, and increased protein phosphorylation of the mammalian target of rapamycin (mTOR). Thus, the anti-inflammatory property of CN renders it a potential therapeutic agent for treating PM2.5-induced lung injury by controlling the TLR4-MyD88 and mTOR-autophagy pathways.


Assuntos
Lesão Pulmonar , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citocinas/metabolismo , Glucosídeos/farmacologia , Pulmão/patologia , Lesão Pulmonar/patologia , Fator 88 de Diferenciação Mieloide/metabolismo , Material Particulado/efeitos adversos , Receptor 4 Toll-Like/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Anim Cells Syst (Seoul) ; 27(1): 1-9, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36704446

RESUMO

Regulation of osteoclastogenesis and bone-resorbing activity can be an efficacious strategy for treating bone loss diseases because excessive osteoclastic bone resorption leads to the development of such diseases. Here, we investigated the role of (-)-tubaic acid, a thermal degradation product of rotenone, in osteoclast formation and function in an attempt to identify alternative natural compounds. (-)-Tubaic acid significantly inhibited receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclast differentiation at both the early and late stages, suggesting that (-)-tubaic acid affects the commitment and differentiation of osteoclast progenitors as well as the cell-cell fusion of mononuclear osteoclasts. (-)-Tubaic acid attenuated the activation of extracellular signal-regulated kinase (ERK) and expression of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) and its target genes in response to RANKL. Furthermore, a pit-formation assay revealed that (-)-tubaic acid significantly impaired the bone-resorbing activity of osteoclasts. Our results demonstrated that (-)-tubaic acid exhibits anti-osteoclastogenic and anti-resorptive effects, indicating its therapeutic potential in the management of osteoclast-related bone diseases.

14.
Tissue Eng Regen Med ; 20(1): 69-81, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36512177

RESUMO

BACKGROUND: Bone growth factors, particularly bone morphogenic protein-2 (BMP-2), are required for effective treatment of significant bone loss. Despite the extensive development of bone substitutes, much remains to be desired for wider application in clinical settings. The currently available bone substitutes cannot sustain prolonged BMP-2 release and are inconvenient to use. In this study, we developed a ready-to-use bone substitute by sequential conjugation of BMP to a three-dimensional (3D) poly(L-lactide) (PLLA) scaffold using novel molecular adhesive materials that reduced the operation time and sustained prolonged BMP release. METHODS: A 3D PLLA scaffold was printed and BMP-2 was conjugated with alginate-catechol and collagen. PLLA scaffolds were conjugated with different concentrations of BMP-2 and evaluated for bone regeneration in vitro and in vivo using a mouse calvarial model. The BMP-2 release kinetics were analyzed using ELISA. Histological analysis and micro-CT image analysis were performed to evaluate new bone formation. RESULTS: The 3D structure of the PLLA scaffold had a pore size of 400 µm and grid thickness of 187-230 µm. BMP-2 was released in an initial burst, followed by a sustained release for 14 days. Released BMP-2 maintained osteoinductivity in vitro and in vivo. Micro-computed tomography and histological findings demonstrate that the PLLA scaffold conjugated with 2 µg/ml of BMP-2 induced optimal bone regeneration. CONCLUSION: The 3D-printed PLLA scaffold conjugated with BMP-2 enhanced bone regeneration, demonstrating its potential as a novel bone substitute.


Assuntos
Substitutos Ósseos , Regeneração Óssea , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Poliésteres/química , Microtomografia por Raio-X , Humanos , Proteínas Recombinantes/química
15.
Nat Neurosci ; 26(2): 259-273, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36564546

RESUMO

While initial encoding of contextual memories involves the strengthening of hippocampal circuits, these memories progressively mature to stabilized forms in neocortex and become less hippocampus dependent. Although it has been proposed that long-term storage of contextual memories may involve enduring synaptic changes in neocortical circuits, synaptic substrates of remote contextual memories have been elusive. Here we demonstrate that the consolidation of remote contextual fear memories in mice correlated with progressive strengthening of excitatory connections between prefrontal cortical (PFC) engram neurons active during learning and reactivated during remote memory recall, whereas the extinction of remote memories weakened those synapses. This synapse-specific plasticity was CREB-dependent and required sustained hippocampal signals, which the retrosplenial cortex could convey to PFC. Moreover, PFC engram neurons were strongly connected to other PFC neurons recruited during remote memory recall. Our study suggests that progressive and synapse-specific strengthening of PFC circuits can contribute to long-term storage of contextual memories.


Assuntos
Neocórtex , Camundongos , Animais , Neocórtex/fisiologia , Memória de Longo Prazo/fisiologia , Memória/fisiologia , Medo/fisiologia , Rememoração Mental , Hipocampo/fisiologia
16.
Food Nutr Res ; 662022.
Artigo em Inglês | MEDLINE | ID: mdl-35721806

RESUMO

Background: Irritable bowel syndrome (IBS) can be caused by abnormal bowel movements, altered brain-gut axis, gut microbiota change, and low levels of inflammation or immune activation. The intake of food containing much fiber and lactic acid bacteria (LABs) can alleviate IBS. Objective: This study was undertaken to confirm the alleviative effect of kimchi on symptoms of IBS. Design: Three types of kimchi (standard kimchi, SK; dead nano-sized Lactobacillus plantarum nF1 (nLp) added to standard kimchi, nLpSK; or functional kimchi, FK) were given to 30 individuals in each of three groups, that is, the SK group (n = 30), the nLpSK group (n = 30), or the FK group (n = 30) at 210 g a day for 12 weeks. Food intake records, serum levels of inflammatory factors, fecal levels of harmful enzymes, and microbiome changes were investigated over the 12-week study period. Results: After intervention, dietary fiber intake was increased in all groups. Typical IBS symptoms (abdominal pain or inconvenience, desperation, incomplete evacuation, and bloating), defecation time, and stool type were also improved. In serum, all groups showed reductions in tumor necrosis factor (TNF)-α (P < 0.001) levels. In addition, serum IL-4 (P < 0.001), IL-10 (P < 0.001), and IL-12 (P < 0.01) were significantly reduced in the nLpSK and FK groups, and serum monocyte chemotactic protein (MCP)-1 (P < 0.05) was significantly reduced in the nLpSK group. Furthermore, activities of fecal ß-glucosidase and ß-glucuronidase were significantly decreased in all three groups, and these reductions were greatest in the nLpSK group. Gut microbiome analysis showed that kimchi consumption increased Firmicutes populations at the expense of Bacteroidetes and Tenericutes populations. In addition, the Bifidobacterium adolescentis population increased significantly in the FK group (P = 0.026). Conclusion: Kimchi intake helps alleviate IBS by increasing dietary fiber intake and reducing serum inflammatory cytokine levels and harmful fecal enzyme activities. Notably, nLp improved the immune system, and several functional ingredients in FK promoted the growth of Bifidobacterium adolescentis in gut.

17.
Life (Basel) ; 12(5)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35629340

RESUMO

Accumulating evidence suggests that the medial prefrontal cortex (mPFC) has been implicated in the acquisition of fear memory during trace fear conditioning in which a conditional stimulus (CS) is paired with an aversive unconditional stimulus (UCS) separated by a temporal gap (trace interval, TI). However, little is known about the role of the prefrontal cortex for short- and long-term trace fear memory formation. Thus, we investigated how the prelimbic (PL) subregion within mPFC in rats contributes to short- and long-term trace fear memory formation using electrolytic lesions and d,l,-2-amino-5-phosphonovaleric acid (APV), an N-methyl-D-aspartate receptor (NMDAR) antagonist infusions into PL. In experiment 1, pre-conditioning lesions of PL impaired freezing to the CS as well as TI during the acquisition and retrieval sessions, indicating that PL is critically involved in trace fear memory formation. In experiment 2, temporary blockade of NMDA receptors in PL impaired the acquisition, but not the expression of short- and long-term trace fear memory. In addition, the inactivation of NMDAR in PL had little effect on locomotor activity, pre-pulse inhibition (PPI), or shock sensitivity. Taken together, these results suggest that NMDA receptor-mediated neurotransmission in PL is required for the acquisition of trace fear memory.

18.
Foods ; 11(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35267311

RESUMO

Osteoporosis is a bone resorptive disease characterized by the loss of bone density, causing an increase in bone fragility. In our previous study, we demonstrated that gamma aminobutyric acid-enriched fermented oyster (Crassostrea gigas) extract (FO) stimulated osteogenesis in MC3T3-E1 preosteoblast cells and vertebral formation in zebrafish. However, the efficacy of FO in prednisolone (PDS)-induced bone resorption remains unclear. In this study, we evaluated the osteogenic potential of FO in MC3T3-E1 preosteoblast cells and zebrafish larvae under both PDS-pretreated and PDS-post-treated conditions. We found that FO recovered osteogenic activity by upregulating osteoblast markers, such as alkaline phosphatase (ALP), runt-related transcription factor 2, and osterix, in both PDS-pretreated and post-treated MC3T3-E1 osteoblast cells and zebrafish larvae. In both conditions, PDS-induced decrease in calcification and ALP activity was recovered in the presence of FO. Furthermore, vertebral resorption in zebrafish larvae induced by pretreatment and post-treatment with PDS was restored by treatment with FO, along with the recovery of osteogenic markers and downregulation of osteoclastogenic markers. Finally, whether FO disturbs the endocrine system was confirmed according to the Organization for Economic Cooperation and Development guideline 455. We found that FO did not stimulate estrogen response element-luciferase activity or proliferation in MCF7 cells. Additionally, in ovariectomized mice, no change in uterine weight was observed during FO feeding. These results indicate that FO effectively prevents and treats PDS-induced osteoporosis without endocrine disturbances.

19.
Biomed Res Int ; 2022: 5339090, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35071596

RESUMO

The manganese (Mn) ion has recently been probed as a potential candidate element for the surface chemistry modification of titanium (Ti) implants in order to develop a more osteogenic surface with the expectation of taking advantage of its strong binding affinity to the integrins on bone-forming cells. However, the exact mechanism of how Mn enhances osteogenesis when introduced into the surface of Ti implants is not clearly understood. This study investigated the corrosion resistance and potential osteogenic capacity of a Mn-incorporated Ti surface as determined by electrochemical measurement and examining the behaviors of human mesenchymal stem cells (MSCs) in a clinically available sandblasted/acid-etched (SLA) oral implant surface intended for future biomedical applications. The surface that resulted from wet chemical treatment exhibited the formation of a Mn-containing nanostructured TiO2 anatase thin film in the SLA implant and improved corrosion resistance. The Mn-incorporated SLA surface displayed sustained Mn ion release and enhanced osteogenesis-related MSC function, which enhanced early cellular events such as spreading, focal adhesion, and mRNA expression of critical adhesion-related genes and promoted full human MSC differentiation into mature osteoblasts. Our findings indicate that surface Mn modification by wet chemical treatment is an effective approach to produce a Ti implant surface with increased osteogenic capacity through the promotion of the osteogenic differentiation of MSCs. The improved corrosion resistance of the resultant surface is yet another important benefit of being able to provide favorable osseointegration interface stability with an increased barrier effect.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Diferenciação Celular , Humanos , Íons/metabolismo , Manganês/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osseointegração , Propriedades de Superfície , Titânio/farmacologia
20.
Curr Mol Med ; 22(8): 747-754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34789124

RESUMO

OBJECTIVE: The relative balance of osteoblasts in bone formation and osteoclasts in bone resorption is crucial for maintaining bone health. With age, this balance between osteoblasts and osteoclasts is broken, resulting in bone loss. Anabolic drugs are continuously being developed to counteract this low bone mass. Recombinant proteins are used as biotherapeutics due to being relatively easy to produce on a large scale and are cost-effective through various expression systems. This study aimed to develop a recombinant protein that would positively impact osteoblast differentiation and mineralized nodule formation using unique cartilage matrix-associated protein (UCMA). METHODS: A recombinant glutathione-S-transferase (GST)-UCMA fusion protein was generated in an E.coli system, and purified by affinity chromatography. MC3T3-E1 osteoblast cells and Osterix (Osx)-knockdown stable cells were cultured for 14 days to investigate osteoblast differentiation and nodule formation in the presence of the recombinant GST-UCMA protein. The differentiated cells were assessed by alizarin red S staining and quantitative PCR of the osteoblast differentiation marker osteocalcin. In addition, cell viability in the presence of the recombinant GST-UCMA protein was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell adhesion assay. RESULTS: The isolation of both purified recombinant GST-only and GST-UCMA proteins were confirmed at 26 kDa and 34 kDa, respectively, by Coomassie staining and western blot analysis. Neither dose-dependent nor time-dependent presence of recombinant GST-UCMA affected MC3T3-E1 cell viability. However, MC3T3-E1 cell adhesion to the recombinant GST-UCMA protein increased dose-dependently. Osteoblast differentiation and nodule formation were promoted in both MC3T3-E1 osteoblast cells and Osxknockdown stable cells when cultured in the presence of recombinant GST-UCMA protein. CONCLUSION: A recombinant GST-UCMA protein induces osteogenic differentiation and mineralization, suggesting its potential use as an anabolic drug to increase low bone mass in osteoporotic patients.


Assuntos
Osteoblastos , Osteogênese , Cartilagem/metabolismo , Diferenciação Celular , Humanos , Proteínas Matrilinas/metabolismo , Proteínas Matrilinas/farmacologia , Osteocalcina/metabolismo , Osteocalcina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA