Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 86(6): 4497-4511, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33647204

RESUMO

Total syntheses of the antirhine alkaloids are described. The cyanide-catalyzed imino-Stetter reaction of the aldimine derived from ethyl 2-aminocinnamate and 4-bromopyridine-2-carboxaldehyde provided a 2-pyridinyl substituted indole-3-acetate, which was further converted into the corresponding indoloquinolizidinium intermediate through C-ring formation. Subsequent trans-selective installation of the homoallylic alcohol side-chain at C-15 in the resulting indoloquinolizidinium allowed the total syntheses of antirhine and its known epimer.


Assuntos
Alcaloides , Cianetos , Alcaloides Indólicos , Estereoisomerismo
2.
Anal Chem ; 93(4): 2106-2113, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33389991

RESUMO

In operando observation of reaction intermediates is crucial for unraveling reaction mechanisms. To address the sensitivity limitations of commercial ReactIR, a flow cell was integrated with a Fourier transform infrared (FTIR) spectrometer yielding a "flow FTIR" device coupled with an NMR spectrometer for the elucidation of reaction mechanisms. The former device detects the low-intensity IR peaks of reaction intermediates by adjusting the path length of the FTIR sample cell, whereas the flow NMR allows the quantitative analysis of reaction species, thus offsetting the limitations of IR spectroscopy resulting from different absorption coefficients of the normal modes. Using the flow NMR and FTIR device, the controversial mechanism of benzoxazole synthesis was conclusively determined by spectroscopic evaluation of the reaction intermediates. This system enabled the accurate acquisition of previously elusive kinetic data, such as the reaction time and rate-determining step. The implementation of reaction flow cells into NMR and FTIR systems could be widely applied to study various reaction mechanisms, including dangerous and harsh reactions, thus avoiding contact with potentially harmful reaction intermediates.

3.
Org Lett ; 22(6): 2354-2358, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32141756

RESUMO

A general synthetic strategy for antirhine alkaloids was developed in this study. The cyanide-catalyzed imino-Stetter reaction of ethyl 2-aminocinnamate and 4-bromopyridine-2-carboxaldehyde afforded the corresponding indole-3-acetic acid derivative. Subsequent formation of the six-membered C ring followed by trans-selective installation of the two-carbon unit at C-15 provided rapid access to the key intermediate. Stereoselective installation of substituents at C-20 allowed the total syntheses of (±)-antirhine, (±)-18,19-dihydroantirhine, and their 20-epimers, all of the known natural products in the antirhine family.

4.
ACS Appl Mater Interfaces ; 12(10): 11890-11897, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-31967458

RESUMO

The development of synthetic methods for monodisperse nanomaterial is of great importance in science and technology related to nanomaterials. The strong demands to prepare exceptionally monodisperse nanocrystals have made digestive-ripening one of the most sought-after size-focusing processes. Although digestive-ripening processes have been demonstrated to produce various metals and semiconductors, their applicability to oxides has rarely been studied despite various unique properties and applications of oxide nanomaterials. In this work, we demonstrate the successful synthesis of monodisperse V-doped In2O3 nanocrystals via a modified digestive-ripening process. The nanocrystals have truncated octahedral shape faceted with eight (222) and six (220) planes. To the best of our knowledge, this is the first report on the digestive-ripening synthesis of highly symmetrical doped oxide nanocrystals. Moreover, V-doped In2O3 nanocrystals exhibit electrocatalytic activities for CO2 electrochemical reduction and produce CH3OH, which has not been attainable from previously reported electrocatalysts based on indium or indium oxide. This distinctive catalytic property of V-doped In2O3 is attributed to the presence of V-dopants in the In2O3 host. Our demonstration has important implications for both nanocrystal synthesis and electrocatalyst development.

5.
Chem Rec ; 18(10): 1474-1488, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29665280

RESUMO

The chemistry of hydrogen cyanide adducts of imines is well-developed, but that of cyanide adducts remains unexplored. This is presumably because these cyanide adducts are not stable and thus not readily available in their isolated forms. In this personal account, we present the progress made in our research program towards the development of novel organic transformations utilizing cyanide adducts of imines as key intermediates. We also report the application of these methodologies to the total synthesis of natural products including indole alkaloids.

6.
Org Biomol Chem ; 15(48): 10265-10275, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29184947

RESUMO

A new strategy applicable to the synthesis of indoloquinolizine natural products has been developed. A cyanide-catalyzed intramolecular imino-Stetter reaction of aldimines, derived from 2-aminocinnamic acid derivatives and 2-pyridinecarboxaldehydes, provided indole-3-acetic acid derivatives bearing a pyridyl ring at the 2-position. Reduction of the carboxylic acid moiety to an alcohol followed by activation of the resulting alcohol with Tf2O or TsCl generated indoloquinolizinium salts, which were utilized as precursors for indoloquinolizine natural products. The advantage of this protocol was successfully demonstrated in the total syntheses of arborescidine A and nauclefidine.


Assuntos
Alcaloides/síntese química , Cianetos/química , Iminas/química , Quinolizinas/síntese química , Alcaloides/química , Catálise , Estrutura Molecular , Quinolizinas/química
7.
Plant Cell Rep ; 27(3): 425-34, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17851663

RESUMO

We report high frequencies of embryo production and plant regeneration through isolated microspore culture of hot pepper (Capsicum annuum L.). Microspores cultured in modified NLN medium (NLNS) divided and developed to embryos. Globular and heart-shaped embryos were observed from 3 weeks after the beginning of culture, and many embryos reached the cotyledonary stage after 4 weeks of culture. These cotyledonary embryos developed to plantlets after transfer to solid B5 basal medium. We also optimized conditions for embryo production by varying the pretreatment media, the carbon sources, and culture densities. Heat shock treatment in sucrose-starvation medium was more effective than in B5 medium. Direct comparisons of sucrose and maltose as carbon sources clearly demonstrated the superiority of sucrose compared to maltose, with the highest frequency of embryo production being obtained in 9% (w/v) sucrose. Microspore plating density was critical for efficient embryonic induction and development, with an optimal plating density of 8 x 10(4)-10 x 10(4)/ml. Under our optimized culture conditions, we obtained over 54 embryos, and an average of 5.5 cotyledonary embryos when 10 x 10(4) microspores were grown on an individual plate.


Assuntos
Capsicum/embriologia , Pólen/embriologia , Capsicum/genética , Capsicum/fisiologia , Técnicas de Cultura de Células/métodos , Haploidia , Pólen/citologia , Pólen/genética , Regeneração/genética , Regeneração/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA