Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomed Opt ; 28(12): 125005, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38144698

RESUMO

Significance: Ultrasonic transducers facilitate noninvasive biomedical imaging and therapeutic applications. Optoacoustic generation using nanoplasmonic structures provides a technical solution for highly efficient broadband ultrasonic transducer. However, bulky and high-cost nanosecond lasers as conventional excitation sources hinder a compact configuration of transducer. Aim: Here, we report a plasmon-enhanced optoacoustic transducer (PEAT) for broadband ultrasound generation, featuring an overdriven pulsed laser diode (LD) and an Ecoflex thin film. The PEAT module consists of an LD, a collimating lens, a focusing lens, and an Ecoflex-coated 3D nanoplasmonic substrate (NPS). Approach: The LD is overdriven above its nominal current and precisely modulated to achieve nanosecond pulsed beam with high optical peak power. The focused laser beam is injected on the NPS with high-density electromagnetic hotspots, which allows for the efficient plasmonic photothermal effect. The thermal expansion of Ecoflex finally generates broadband ultrasound. Results: The overdriven pulsed LD achieves a maximum optical peak power of 40 W, exceeding the average optical power of 3 W. The 22 µm thick Ecoflex-coated NPS exhibits an eightfold optoacoustic enhancement with a fractional -6 dB bandwidth higher than 160% and a peak frequency of 2.5 MHz. In addition, the optoacoustic amplitude is precisely controlled by the optical peak power or the laser pulse width. The PEAT-integrated microfluidic chip clearly demonstrates acoustic atomization by generating aerosol droplets at the air-liquid interface. Conclusions: Plasmon-enhanced optoacoustic generation using PEAT can provide an approach for compact and on-demand biomedical applications, such as ultrasound imaging and lab-on-a-chip technologies.


Assuntos
Lasers Semicondutores , Transdutores , Ultrassonografia/métodos , Solo
2.
Polymers (Basel) ; 15(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37835934

RESUMO

The photochemical degradation of natural rubber (NR) is a prevalent method used to modify its inherent properties. Natural rubber, predominantly derived from the Hevea Brasiliensis tree, exhibits an exceptionally high molecular weight (MW), often reaching a million daltons (Da). This high MW restricts its solubility in various solvents and its reactivity with polar compounds, thereby constraining its versatile applications. In our previous work, we employed TiO2 in its powdered form as a photocatalyst for the functionalization of NR latex. However, the post-process separation and reuse of this powder present substantial challenges. In this present study, we aimed to functionalize deproteinized NR (DPNR) latex. We systematically reduced its MW via photochemical degradation under UVA irradiation facilitated by H2O2. To enhance the efficiency of the degradation process, we introduced TiO2-coated hollow glass beads (TiO2-HGBs) as photocatalysts. This approach offers the advantage of easy collection and repeated reuse. The modified DPNR showed a reduction in its number-average MW from 9.48 × 105 to 0.28 × 105 Da and incorporated functional groups, including hydroxyl, carbonyl, and epoxide. Remarkably, the TiO2-HGBs maintained their performance over seven cycles of reuse. Due to their superior efficacy, TiO2-HGBs stand out as promising photocatalysts for the advanced functionalization of NR across various practical applications.

3.
Opt Express ; 31(12): 20410-20423, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381436

RESUMO

Increasing the light extraction efficiency has been widely studied for highly efficient organic light-emitting diodes (OLEDs). Among many light-extraction approaches proposed so far, adding a corrugation layer has been considered a promising solution for its simplicity and high effectiveness. While the working principle of periodically corrugated OLEDs can be qualitatively explained by the diffraction theory, dipolar emission inside the OLED structure makes its quantitative analysis challenging, making one rely on finite-element electromagnetic simulations that could require huge computing resources. Here, we demonstrate a new simulation method, named the diffraction matrix method (DMM), that can accurately predict the optical characteristics of periodically corrugated OLEDs while achieving calculation speed that is a few orders of magnitude faster. Our method decomposes the light emitted by a dipolar emitter into plane waves with different wavevectors and tracks the diffraction behavior of waves using diffraction matrices. Calculated optical parameters show a quantitative agreement with those predicted by finite-difference time-domain (FDTD) method. Furthermore, the developed method possesses a unique advantage over the conventional approaches that it naturally evaluates the wavevector-dependent power dissipation of a dipole and is thus capable of identifying the loss channels inside OLEDs in a quantitative manner.

4.
Eur J Clin Nutr ; 77(3): 342-347, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36418536

RESUMO

BACKGROUND: Many people in modern society have insufficient exposure to ultraviolet B (UVB) sunlight, which may lead to vitamin D deficiency. We aimed to investigate the effect of a proto-type wearable light-emitting diode (LED) device emitting UVB light on serum 25-hydroxyvitamin D levels. METHODS: A total of 136 healthy adults were randomly assigned to receive either an active device emitting UVB light with a peak wavelength of 285 nm (n = 64) or a sham device emitting visible light (n = 72). All participants wore the device for a total of two minutes, one minute on each forearm, every day for 4 weeks. Serum 25-hydroxyvitamin D levels were assessed at baseline, 2, and 4 weeks of intervention, and 2 weeks after the end of the intervention. RESULTS: A significant difference was found between the experimental and control groups in changes in serum 25-hydroxyvitamin D levels from baseline after two (0.25 ± 3.10 ng/mL vs. -1.07 ± 2.68 ng/mL, p = 0.009) and 4 weeks of intervention (0.75 ± 3.98 ng/mL vs. -1.75 ± 3.04 ng/mL, p < 0.001). In the experimental group, the dropout rate due to mild, self-limiting adverse skin reactions was 11.8% (9/76). The mean total 25-hydroxyvitamin D production after UVB exposure was estimated at 0.031 ng/mL per 1 cm2 of skin area. CONCLUSIONS: A prototype wearable LED UVB device was effective for improving 25-hydroxyvitamin D status. The development of a safer wearable LED device for phototherapy may provide a novel daily, at-home option for vitamin D supplementation.


Assuntos
Deficiência de Vitamina D , Vitamina D , Adulto , Humanos , Calcifediol , Raios Ultravioleta , Deficiência de Vitamina D/prevenção & controle
6.
Sci Rep ; 12(1): 15550, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114215

RESUMO

With aging, optimal parameters of flickering light stimulation (FLS) for gamma entrainment may change in the eyes and brain. We investigated the optimal FLS parameters for gamma entrainment in 35 cognitively normal old adults by comparing event-related synchronization (ERS) and spectral Granger causality (sGC) of entrained gamma rhythms between different luminance intensities, colors, and flickering frequencies of FLSs. ERS entrained by 700 cd/m2 FLS and 32 Hz or 34 Hz FLSs was stronger than that entrained by 400 cd/m2 at Pz (p < 0.01) and 38 Hz or 40 Hz FLSs, respectively, at both Pz (p < 0.05) and Fz (p < 0.01). Parieto-occipital-to-frontotemporal connectivities of gamma rhythm entrained by 700 cd/m2 FLS and 32 Hz or 34 Hz FLSs were also stronger than those entrained by 400 cd/m2 at Pz (p < 0.01) and 38 Hz or 40 Hz FLSs, respectively (p < 0.001). ERS and parieto-occipital-to-frontotemporal connectivities of entrained gamma rhythms did not show significant difference between white and red lights. Adverse effects were comparable between different parameters. In older adults, 700 cd/m2 FLS at 32 Hz or 34 Hz can entrain a strong gamma rhythm in the whole brain with tolerable adverse effects.


Assuntos
Encéfalo , Ritmo Gama , Encéfalo/fisiologia , Ritmo Gama/fisiologia , Luz
7.
Plant Cell Rep ; 41(7): 1603-1612, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35589978

RESUMO

KEY MESSAGE: The AtSF1-FLM module spatially controls temperature-dependent flowering by negatively regulating the expression of FT and LFY in the leaf and shoot apex, respectively. Alternative splicing mediated by various splicing factors is important for the regulation of plant growth and development. Our recent reports have shown that a temperature-dependent interaction between Arabidopsis thaliana splicing factor 1 (AtSF1) and FLOWERING LOCUS M (FLM) pre-mRNA introns controls the differential production of FLM-ß transcripts at different temperatures, eventually resulting in temperature-responsive flowering. However, the molecular and genetic interactions between the AtSF1-FLM module and floral activator genes remain unknown. Here, we aimed to identify the interactions among AtSF1, FLM, FLOWERING LOCUS T (FT), and LEAFY (LFY) by performing molecular and genetic analyses. FT and TWIN SISTER OF FT (TSF) expression in atsf1-2 mutants significantly increased in the morning and middle of the night at 16 and 23 °C, respectively, under long-day conditions. In addition, ft mutation suppressed the early flowering of atsf1-2 and atsf1-2 flm-3 mutants and masked the temperature response of atsf1-2 flm-3 mutants, suggesting that FT is a downstream target gene of the AtSF1-FLM module. LFY expression significantly increased in the diurnal samples of atsf1-2 mutants and in the shoot apex regions of atsf1-2 ft-10 mutants at different temperatures. The chromatin immunoprecipitation (ChIP) assay revealed that FLM directly binds to the genomic regions of LFY but not of APETALA1 (AP1). Moreover, lfy mutation suppressed the early flowering of flm-3 mutants, suggesting that LFY is another target of the AtSF1-FLM module. Our results reveal that the AtSF1-FLM module spatially modulates temperature-dependent flowering by regulating FT and LFY expressions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Mutação/genética , Folhas de Planta/metabolismo , Fatores de Processamento de RNA/genética , Temperatura
8.
Sci Rep ; 11(1): 16206, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376723

RESUMO

Although light flickering at 40 Hz reduced Alzheimer's disease (AD) pathologies in mice by entraining gamma waves, it failed to reduce cerebral amyloid burden in a study on six patients with AD or mild cognitive impairment. We investigated the optimal color, intensity, and frequency of the flickering light stimulus for entraining gamma waves in young adults. We compared the event-related synchronization (ERS) values of entrained gamma waves between four different light colors (white, red, green, and blue) in the first experiment and four different luminance intensities in the second experiment. In both experiments, we compared the ERS values of entrained gamma waves between 10 different flickering frequencies from 32 to 50 Hz. We also examined the severity of six adverse effects in both experiments. We compared the propagation of gamma waves in the visual cortex to other brain regions between different luminance intensities and flickering frequencies. We found that red light entrained gamma waves most effectively, followed by white light. Lights of higher luminance intensities (700 and 400 cd/m2) entrained stronger gamma waves than those of lower luminance intensities (100 and 10 cd/m2). Lights flickering at 34-38 Hz entrained stronger and more widely spread beyond the visual cortex than those flickering at 40-50 Hz. Light of 700 cd/m2 resulted in more moderate-to-severe adverse effects than those of other luminance intensities. In humans, 400 cd/m2 white light flickering at 34-38 Hz was most optimal for gamma entrainment.


Assuntos
Encéfalo/fisiologia , Raios gama , Luz , Visão Ocular/fisiologia , Córtex Visual/fisiologia , Adulto , Encéfalo/efeitos da radiação , Eletroencefalografia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Estimulação Luminosa , Adulto Jovem
9.
Front Plant Sci ; 11: 596354, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335535

RESUMO

Small changes in temperature affect plant ecological and physiological factors that impact agricultural production. Hence, understanding how temperature affects flowering is crucial for decreasing the effects of climate change on crop yields. Recent reports have shown that FLM-ß, the major spliced isoform of FLOWERING LOCUS M (FLM)-a flowering time gene, contributes to temperature-responsive flowering in Arabidopsis thaliana. However, the molecular mechanism linking pre-mRNA processing and temperature-responsive flowering is not well understood. Genetic and molecular analyses identified the role of an Arabidopsis splicing factor SF1 homolog, AtSF1, in regulating temperature-responsive flowering. The loss-of-function AtSF1 mutant shows temperature insensitivity at different temperatures and very low levels of FLM-ß transcript, but a significantly increased transcript level of the alternative splicing (AS) isoform, FLM-δ. An RNA immunoprecipitation (RIP) assay revealed that AtSF1 is responsible for ambient temperature-dependent AS of FLM pre-mRNA, resulting in the temperature-dependent production of functional FLM-ß transcripts. Moreover, alterations in other splicing factors such as ABA HYPERSENSITIVE1/CBP80 (ABH1/CBP80) and STABILIZED1 (STA1) did not impact the FLM-ß/FLM-δ ratio at different temperatures. Taken together, our data suggest that a temperature-dependent interaction between AtSF1 and FLM pre-mRNA controls flowering time in response to temperature fluctuations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA