Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(20): 6043-6050, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717152

RESUMO

Studying antiferromagnetic domains is essential for fundamental physics and potential spintronics applications. Despite their importance, few systematic studies have been performed on antiferromagnet (AFM) domains with high spatial resolution in van der Waals (vdW) materials, and direct probing of the Néel vectors remains challenging. In this work, we found multidomain states in the vdW AFM NiPS3, a material extensively investigated for its unique magnetic exciton. We employed photoemission electron microscopy combined with the X-ray magnetic linear dichroism (XMLD-PEEM) to image the NiPS3's magnetic structure. The nanometer-spatial resolution of XMLD-PEEM allows us to determine local Néel vector orientations and discover thermally fluctuating Néel vectors that are independent of the crystal symmetry even at 65 K, well below the TN of 155 K. We demonstrate that an in-plane orbital moment of the Ni ion is responsible for the weak magnetocrystalline anisotropy. The observed thermal fluctuations of the antiferromagnetic domains may explain the broadening of magnetic exciton peaks at higher temperatures.

2.
Nat Commun ; 15(1): 2276, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480696

RESUMO

A polariton is a fundamental quasiparticle that arises from strong light-matter interaction and as such has attracted wide scientific and practical interest. When light is strongly coupled to the crystal lattice, it gives rise to phonon-polaritons (PPs), which have been proven useful in the dynamical manipulation of quantum materials and the advancement of terahertz technologies. Yet, current detection and characterization methods of polaritons are still limited. Traditional techniques such as Raman or transient grating either rely on fine-tuning of external parameters or complex phase extraction techniques. To overcome these inherent limitations, we propose and demonstrate a technique based on a time-of-flight measurement of PPs. We resonantly launch broadband PPs with intense terahertz fields and measure the time-of-flight of each spectral component with time-resolved second harmonic generation. The time-of-flight information, combined with the PP attenuation, enables us to resolve the real and imaginary parts of the PP dispersion relation. We demonstrate this technique in the van der Waals magnets NiI2 and MnPS3 and reveal a hidden magnon-phonon interaction. We believe that this approach will unlock new opportunities for studying polaritons across diverse material systems and enhance our understanding of strong light-matter interaction.

3.
Nat Commun ; 15(1): 243, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172119

RESUMO

The thermal Hall effect in magnetic insulators has been considered a powerful method for examining the topological nature of charge-neutral quasiparticles such as magnons. Yet, unlike the kagome system, the triangular lattice has received less attention for studying the thermal Hall effect because the scalar spin chirality cancels out between adjacent triangles. However, such cancellation cannot be perfect if the triangular lattice is distorted. Here, we report that the trimerized triangular lattice of multiferroic hexagonal manganite YMnO3 produces a highly unusual thermal Hall effect under an applied magnetic field. Our theoretical calculations demonstrate that the thermal Hall conductivity is related to the splitting of the otherwise degenerate two chiralities of its 120˚ magnetic structure. Our result is one of the most unusual cases of topological physics due to this broken Z2 symmetry of the chirality in the supposedly paramagnetic state of YMnO3, due to strong topological spin fluctuations with the additional intricacy of a Dzyaloshinskii-Moriya interaction.

4.
Adv Mater ; 36(14): e2312824, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38161222

RESUMO

Inversion symmetry breaking is critical for many quantum effects and fundamental for spin-orbit torque, which is crucial for next-generation spintronics. Recently, a novel type of gigantic intrinsic spin-orbit torque is established in the topological van der Waals (vdW) magnet iron germanium telluride. However, it remains a puzzle because no clear evidence exists for interlayer inversion symmetry breaking. Here, the definitive evidence of broken inversion symmetry in iron germanium telluride directly measured by the second harmonic generation (SHG) technique is reported. The data show that the crystal symmetry reduces from centrosymmetric P63/mmc to noncentrosymmetric polar P3m1 space group, giving the threefold SHG pattern with dominant out-of-plane polarization. Additionally, the SHG response evolves from an isotropic pattern to a sharp threefold symmetry upon increasing Fe deficiency, mainly due to the transition from random defects to ordered Fe vacancies. Such SHG response is robust against temperature, ensuring unaltered crystalline symmetries above and below the ferromagnetic transition temperature. These findings add crucial new information to the understanding of this interesting vdW metal, iron germanium telluride: band topology, intrinsic spin-orbit torque, and topological vdW polar metal states.

5.
Nat Commun ; 14(1): 8346, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102124

RESUMO

The triangular lattice antiferromagnet (TLAF) has been the standard paradigm of frustrated magnetism for several decades. The most common magnetic ordering in insulating TLAFs is the 120° structure. However, a new triple-Q chiral ordering can emerge in metallic TLAFs, representing the short wavelength limit of magnetic skyrmion crystals. We report the metallic TLAF Co1/3TaS2 as the first example of tetrahedral triple-Q magnetic ordering with the associated topological Hall effect (non-zero σxy(H = 0)). We also present a theoretical framework that describes the emergence of this magnetic ground state, which is further supported by the electronic structure measured by angle-resolved photoemission spectroscopy. Additionally, our measurements of the inelastic neutron scattering cross section are consistent with the calculated dynamical structure factor of the tetrahedral triple-Q state.

6.
Nano Lett ; 23(22): 10189-10195, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37931216

RESUMO

The unique discovery of the magnetic exciton in van der Waals antiferromagnet NiPS3 arises between two quantum many-body states of a Zhang-Rice singlet excited state and a Zhang-Rice triplet ground state. Simultaneously, the spectral width of photoluminescence originating from this exciton is exceedingly narrow as 0.4 meV. These extraordinary properties, including the extreme coherence of the magnetic exciton in NiPS3, beg many questions. We studied doping effects using Ni1-xCdxPS3 using two experimental techniques and theoretical studies. Our experimental results show that the magnetic exciton is drastically suppressed upon a few % Cd doping. All this happens while the width of the exciton only gradually increases and the antiferromagnetic ground state is robust. These results highlight the lattice uniformity's hidden importance as a prerequisite for coherent magnetic exciton. Finally, an exciting scenario emerges: the broken charge transfer forbids the otherwise uniform formation of the coherent magnetic exciton in (Ni,Cd)PS3.

7.
ACS Omega ; 8(15): 14190-14196, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37091409

RESUMO

We have conducted a terahertz spectroscopic study and a density functional theory analysis of the phonon dynamics of the layered van der Waals semiconductors Nb3Cl8 and Nb3I8. Several infrared-active phonon modes were observed in the terahertz region, and their frequencies were found to be in excellent agreement with our first-principles lattice dynamics calculations. For Nb3Cl8, the observed phonon spectra are consistent with a structural transition at 90 K from the high-temperature P3̅m1 phase to the low-temperature R3̅m phase. Also, our study confirmed that the structural and magnetic transitions were coupled in Nb3Cl8. For Nb3I8, which is nonmagnetic at and below room temperature, no significant temperature or magnetic field dependence was observed in the phonon spectra. Our study provides an intriguing connection between the structural properties and the paramagnetic-nonmagnetic transitions in Nb3Cl8 and Nb3I8.

8.
Proc Natl Acad Sci U S A ; 120(12): e2208968120, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36917673

RESUMO

Strong interactions between different degrees of freedom lead to exotic phases of matter with complex order parameters and emergent collective excitations. Conventional techniques, such as scattering and transport, probe the amplitudes of these excitations, but they are typically insensitive to phase. Therefore, novel methods with phase sensitivity are required to understand ground states with phase modulations and interactions that couple to the phase of collective modes. Here, by performing phase-resolved coherent phonon spectroscopy (CPS), we reveal a hidden spin-lattice coupling in a vdW antiferromagnet FePS3 that eluded other phase-insensitive conventional probes, such as Raman and X-ray scattering. With comparative analysis and analytical calculations, we directly show that the magnetic order in FePS3 selectively couples to the trigonal distortions through partially filled t2g orbitals. This magnetoelastic coupling is linear in magnetic order and lattice parameters, rendering these distortions inaccessible to inelastic scattering techniques. Our results not only capture the elusive spin-lattice coupling in FePS3 but also establish phase-resolved CPS as a tool to investigate hidden interactions.

10.
Nat Commun ; 13(1): 98, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013277

RESUMO

In van der Waals (vdW) materials, strong coupling between different degrees of freedom can hybridize elementary excitations into bound states with mixed character1-3. Correctly identifying the nature and composition of these bound states is key to understanding their ground state properties and excitation spectra4,5. Here, we use ultrafast spectroscopy to reveal bound states of d-orbitals and phonons in 2D vdW antiferromagnet NiPS3. These bound states manifest themselves through equally spaced phonon replicas in frequency domain. These states are optically dark above the Néel temperature and become accessible with magnetic order. By launching this phonon and spectrally tracking its amplitude, we establish the electronic origin of bound states as localized d-d excitations. Our data directly yield electron-phonon coupling strength which exceeds the highest known value in 2D systems6. These results demonstrate NiPS3 as a platform to study strong interactions between spins, orbitals and lattice, and open pathways to coherent control of 2D magnets.

11.
Adv Mater ; 34(10): e2109144, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34936713

RESUMO

Matter-light interaction is at the center of diverse research fields from quantum optics to condensed matter physics, opening new fields like laser physics. A magnetic exciton is one such rare example found in magnetic insulators. However, it is relatively rare to observe that external variables control matter-light interaction. Here, it is reported that the broken inversion symmetry of multiferroicity can act as an external knob enabling magnetic excitons in the van der Waals antiferromagnet NiI2 . It is further discovered that this magnetic exciton arises from a transition between Zhang-Rice-triplet and Zhang-Rice-singlet fundamentally quantum-entangled states. This quantum entanglement produces an ultrasharp optical exciton peak at 1.384 eV with a 5 meV linewidth. The work demonstrates that NiI2 is 2D magnetically ordered with an intrinsically quantum-entangled ground state.

12.
Nature ; 600(7888): 235-239, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34880426

RESUMO

Strong periodic driving with light offers the potential to coherently manipulate the properties of quantum materials on ultrafast timescales. Recently, strategies have emerged to drastically alter electronic and magnetic properties by optically inducing non-trivial band topologies1-6, emergent spin interactions7-11 and even superconductivity12. However, the prospects and methods of coherently engineering optical properties on demand are far less understood13. Here we demonstrate coherent control and giant modulation of optical nonlinearity in a van der Waals layered magnetic insulator, manganese phosphorus trisulfide (MnPS3). By driving far off-resonance from the lowest on-site manganese d-d transition, we observe a coherent on-off switching of its optical second harmonic generation efficiency on the timescale of 100 femtoseconds with no measurable dissipation. At driving electric fields of the order of 109 volts per metre, the on-off ratio exceeds 10, which is limited only by the sample damage threshold. Floquet theory calculations14 based on a single-ion model of MnPS3 are able to reproduce the measured driving field amplitude and polarization dependence of the effect. Our approach can be applied to a broad range of insulating materials and could lead to dynamically designed nonlinear optical elements.

13.
Nat Commun ; 12(1): 6356, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737260

RESUMO

Magnetite (Fe3O4) is of fundamental importance for the Verwey transition near TV = 125 K, below which a complex lattice distortion and electron orders occur. The Verwey transition is suppressed by chemical doping effects giving rise to well-documented first and second-order regimes, but the origin of the order change is unclear. Here, we show that slow oxidation of monodisperse Fe3O4 nanoparticles leads to an intriguing variation of the Verwey transition: an initial drop of TV to a minimum at 70 K after 75 days and a followed recovery to 95 K after 160 days. A physical model based on both doping and doping-gradient effects accounts quantitatively for this evolution between inhomogeneous to homogeneous doping regimes. This work demonstrates that slow oxidation of nanoparticles can give exquisite control and separation of homogeneous and inhomogeneous doping effects on the Verwey transition and offers opportunities for similar insights into complex electronic and magnetic phase transitions in other materials.

14.
ACS Nano ; 15(10): 16904-16912, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34661389

RESUMO

Ferromagnetism in two-dimensional materials presents a promising platform for the development of ultrathin spintronic devices with advanced functionalities. Recently discovered ferromagnetic van der Waals crystals such as CrI3, readily isolated two-dimensional crystals, are highly tunable through external fields or structural modifications. However, there remains a challenge because of material instability under air exposure. Here, we report the observation of an air-stable and layer-dependent ferromagnetic (FM) van der Waals crystal, CrPS4, using magneto-optic Kerr effect microscopy. In contrast to the antiferromagnetic (AFM) bulk, the FM out-of-plane spin orientation is found in the monolayer crystal. Furthermore, alternating AFM and FM properties observed in even and odd layers suggest robust antiferromagnetic exchange interactions between layers. The observed ferromagnetism in these crystals remains resilient even after the air exposure of about a day, providing possibilities for the practical applications of van der Waals spintronics.

15.
J Phys Condens Matter ; 34(2)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34614480

RESUMO

The realization of Kitaev's honeycomb magnetic model in real materials has become one of the most pursued topics in condensed matter physics and materials science. If found, it is expected to host exotic quantum phases of matter and offers potential realizations of fault-tolerant quantum computations. Over the past years, much effort has been made on 4d- or 5d-heavy transition metal compounds because of their intrinsic strong spin-orbit coupling. But more recently, there have been growing shreds of evidence that the Kitaev model could also be realized in 3d-transition metal systems with much weaker spin-orbit coupling. This review intends to serve as a guide to this fast-developing field focusing on systems withd7transition metal occupation. It overviews the current theoretical and experimental progress on realizing the Kitaev model in those systems. We examine the recent experimental observations of candidate materials with Co2+ions: e.g., CoPS3, Na3Co2SbO6, and Na2Co2TeO6, followed by a brief review of theoretical backgrounds. We conclude this article by comparing experimental observations with density functional theory calculations. We stress the importance of inter-t2ghopping channels and Hund's coupling in the realization of Kitaev interactions in Co-based compounds, which has been overlooked in previous studies. This review suggests future directions in the search for Kitaev physics in 3dcobalt compounds and beyond.

16.
Nat Commun ; 12(1): 5559, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548484

RESUMO

Spin-orbit coupled honeycomb magnets with the Kitaev interaction have received a lot of attention due to their potential of hosting exotic quantum states including quantum spin liquids. Thus far, the most studied Kitaev systems are 4d/5d-based honeycomb magnets. Recent theoretical studies predicted that 3d-based honeycomb magnets, including Na2Co2TeO6 (NCTO), could also be a potential Kitaev system. Here, we have used a combination of heat capacity, magnetization, electron spin resonance measurements alongside inelastic neutron scattering (INS) to study NCTO's quantum magnetism, and we have found a field-induced spin disordered state in an applied magnetic field range of 7.5 T < B (⊥ b-axis) < 10.5 T. The INS spectra were also simulated to tentatively extract the exchange interactions. As a 3d-magnet with a field-induced disordered state on an effective spin-1/2 honeycomb lattice, NCTO expands the Kitaev model to 3d compounds, promoting further interests on the spin-orbital effect in quantum magnets.

17.
J Phys Condens Matter ; 34(4)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34517360

RESUMO

Finding new materials with antiferromagnetic (AFM) Kitaev interaction is an urgent issue for quantum magnetism research. We conclude that Na3Co2SbO6and Na2Co2TeO6are new honeycomb cobalt-based systems with AFM Kitaev interaction by carrying out inelastic neutron scattering experiments and subsequent analysis. The spin-orbit excitons observed at 20-28 meV in both compounds strongly support the idea that Co2+ions of both compounds have a spin-orbital entangledJeff= 1/2 state. Furthermore, we found that a generalized Kitaev-Heisenberg Hamiltonian can describe the spin-wave excitations of both compounds with additional 3rd nearest-neighbor interaction. Our best-fit parameters show significant AFM Kitaev terms and off-diagonal symmetric anisotropy terms of a similar magnitude in both compounds. We also found a strong magnon-damping effect at the higher energy part of the spin waves, entirely consistent with observations in other Kitaev magnets. Our work suggests Na3Co2SbO6and Na2Co2TeO6as rare examples of the AFM Kitaev magnets based on the systematic studies of the spin waves and analysis.

18.
Nat Commun ; 12(1): 4837, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376692

RESUMO

Collective excitations of bound electron-hole pairs-known as excitons-are ubiquitous in condensed matter, emerging in systems as diverse as band semiconductors, molecular crystals, and proteins. Recently, their existence in strongly correlated electron materials has attracted increasing interest due to the excitons' unique coupling to spin and orbital degrees of freedom. The non-equilibrium driving of such dressed quasiparticles offers a promising platform for realizing unconventional many-body phenomena and phases beyond thermodynamic equilibrium. Here, we achieve this in the van der Waals correlated insulator NiPS3 by photoexciting its newly discovered spin-orbit-entangled excitons that arise from Zhang-Rice states. By monitoring the time evolution of the terahertz conductivity, we observe the coexistence of itinerant carriers produced by exciton dissociation and a long-wavelength antiferromagnetic magnon that coherently precesses in time. These results demonstrate the emergence of a transient metallic state that preserves long-range antiferromagnetism, a phase that cannot be reached by simply tuning the temperature. More broadly, our findings open an avenue toward the exciton-mediated optical manipulation of magnetism.

19.
Nano Lett ; 21(12): 5126-5132, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34096728

RESUMO

Realizing a state of matter in two dimensions has repeatedly proven a novel route of discovering new physical phenomena. Van der Waals (vdW) materials have been at the center of these now extensive research activities. They offer a natural way of producing a monolayer of matter simply by mechanical exfoliation. This work demonstrates that the possible multiferroic state with coexisting antiferromagnetic and ferroelectric orders persists down to the bilayer flake of NiI2. By exploiting the optical second-harmonic generation technique, both magnitude and direction of the ferroelectric order, arising from the cycloidal spin order, are successfully traced. The possible multiferroic state's transition temperature decreases from 58 K for the bulk to about 20 K for the bilayer. Our observation will spur extensive efforts to demonstrate multifunctionality in vdW materials, which have been tried mostly by using heterostructures of singly ferroic ones until now.

20.
Nat Commun ; 12(1): 2306, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863905

RESUMO

Novel effects induced by nonmagnetic impurities in frustrated magnets and quantum spin liquid represent a highly nontrivial and interesting problem. A theoretical proposal of extended modulated spin structures induced by doping of such magnets, distinct from the well-known skyrmions has attracted significant interest. Here, we demonstrate that nonmagnetic impurities can produce such extended spin structures in h-YMnO3, a triangular antiferromagnet with noncollinear magnetic order. Using inelastic neutron scattering (INS), we measured the full dynamical structure factor in Al-doped h-YMnO3 and confirmed the presence of magnon damping with a clear momentum dependence. Our theoretical calculations can reproduce the key features of the INS data, supporting the formation of the proposed spin textures. As such, our study provides the first experimental confirmation of the impurity-induced spin textures. It offers new insights and understanding of the impurity effects in a broad class of noncollinear magnetic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA