Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(3): 3858-3865, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284050

RESUMO

In this study, a newly designed adhesion promoter, a modified ethylene-propylene-diene terpolymer (m-EPDM), was constructed via a simple thiol-ene click reaction between the ethylene-propylene-diene terpolymer (EPDM) and 3-mercaptopropyltrimethoxysilane (MPTS) to employ polyolefin elastomer (POE) encapsulants in photovoltaic modules. The grafting reaction of MPTS on an EPDM backbone (thiol-ene click reaction) was verified using 1H NMR, 29Si NMR, and SEM/EDX. The thermal and mechanical characteristics of the POE compounds did not significantly change with an increasing m-EPDM content irrespective of the cross-linking state. Interestingly, the adhesion strength to the glass substrate increased linearly with an increasing m-EPDM content until 9 phr. Also, the POE compounds containing more than 12 phr m-EPDM showed cohesion failure of the encapsulant layer, remaining as a residue of the encapsulant layer on the glass surface after peel testing. The damp-heat test was conducted to evaluate the long-term durability of the photovoltaic module encapsulated with m-EPDM, and no significant power loss was found even after 1000 h under the test conditions.

2.
PLoS Pathog ; 19(5): e1011415, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37216386

RESUMO

The facultative human pathogen, Vibrio cholerae, employs two-component signal transduction systems (TCS) to sense and respond to environmental signals encountered during its infection cycle. TCSs consist of a sensor histidine kinase (HK) and a response regulator (RR); the V. cholerae genome encodes 43 HKs and 49 RRs, of which 25 are predicted to be cognate pairs. Using deletion mutants of each HK gene, we analyzed the transcription of vpsL, a biofilm gene required for Vibrio polysaccharide and biofilm formation. We found that a V. cholerae TCS that had not been studied before, now termed Rvv, controls biofilm gene transcription. The Rvv TCS is part of a three-gene operon that is present in 30% of Vibrionales species. The rvv operon encodes RvvA, the HK; RvvB, the cognate RR; and RvvC, a protein of unknown function. Deletion of rvvA increased transcription of biofilm genes and altered biofilm formation, while deletion of rvvB or rvvC lead to no changes in biofilm gene transcription. The phenotypes observed in ΔrvvA depend on RvvB. Mutating RvvB to mimic constitutively active and inactive versions of the RR only impacted phenotypes in the ΔrvvA genetic background. Mutating the conserved residue required for kinase activity in RvvA did not affect phenotypes, whereas mutation of the conserved residue required for phosphatase activity mimicked the phenotype of the rvvA mutant. Furthermore, ΔrvvA displayed a significant colonization defect which was dependent on RvvB and RvvB phosphorylation state, but not on VPS production. We found that RvvA's phosphatase activity regulates biofilm gene transcription, biofilm formation, and colonization phenotypes. This is the first systematic analysis of the role of V. cholerae HKs in biofilm gene transcription and resulted in the identification of a new regulator of biofilm formation and virulence, advancing our understanding of the role TCSs play in regulating these critical cellular processes in V. cholerae.


Assuntos
Vibrio cholerae , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Virulência , Monoéster Fosfórico Hidrolases/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
EMBO J ; 42(3): e111562, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36504455

RESUMO

Pandemic and endemic strains of Vibrio cholerae arise from toxigenic conversion by the CTXφ bacteriophage, a process by which CTXφ infects nontoxigenic strains of V. cholerae. CTXφ encodes the cholera toxin, an enterotoxin responsible for the watery diarrhea associated with cholera infections. Despite the critical role of CTXφ during infections, signals that affect CTXφ-driven toxigenic conversion or expression of the CTXφ-encoded cholera toxin remain poorly characterized, particularly in the context of the gut mucosa. Here, we identify mucin polymers as potent regulators of CTXφ-driven pathogenicity in V. cholerae. Our results indicate that mucin-associated O-glycans block toxigenic conversion by CTXφ and suppress the expression of CTXφ-related virulence factors, including the toxin co-regulated pilus and cholera toxin, by interfering with the TcpP/ToxR/ToxT virulence pathway. By synthesizing individual mucin glycan structures de novo, we identify the Core 2 motif as the critical structure governing this virulence attenuation. Overall, our results highlight a novel mechanism by which mucins and their associated O-glycan structures affect CTXφ-mediated evolution and pathogenicity of V. cholerae, underscoring the potential regulatory power housed within mucus.


Assuntos
Bacteriófagos , Toxina da Cólera , Mucinas , Vibrio cholerae , Virulência , Bacteriófagos/genética , Bacteriófagos/patogenicidade , Toxina da Cólera/genética , Toxina da Cólera/metabolismo , Mucinas/genética , Mucinas/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Virulência/genética , Virulência/fisiologia , Polissacarídeos/genética , Polissacarídeos/metabolismo
4.
Polymers (Basel) ; 14(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36365618

RESUMO

In this study, polyolefin elastomer (POE) was blended with a chemically modified hydrocarbon resin (m-HCR), which was modified through a simple radical grafting reaction using γ-methacryloxypropyl trimethoxy silane (MTS) as an adhesion promotor to the glass surface, to design an adhesion-enhanced polyolefin encapsulant material for photovoltaic modules. Its chemical modification was confirmed by 1H and 29Si NMR and FT-IR. Interestingly, the POE blends with the m-HCR showed that the melting peak temperature (Tm) was not changed. However, Tm shifted to lower values with increasing m-HCR content after crosslinking. Additionally, the mechanical properties did not significantly differ with increasing m-HCR content. Meanwhile, with increasing m-HCR content in the POE blend, the peel strength increased linearly without sacrificing their transmittance. The test photovoltaic modules comprising the crosslinked POE blend encapsulants showed little difference in the electrical performance after manufacturing. After 1000 h of damp-heat exposure, no significant power loss was observed.

5.
mBio ; 13(4): e0188522, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35880882

RESUMO

The human pathogen Vibrio cholerae grows as biofilms, communities of cells encased in an extracellular matrix. When growing in biofilms, cells compete for resources and space. One common competitive mechanism among Gram-negative bacteria is the type six secretion system (T6SS), which can deliver toxic effector proteins into a diverse group of target cells, including other bacteria, phagocytic amoebas, and human macrophages. The response regulator VxrB positively regulates both biofilm matrix and T6SS gene expression. Here, we directly observe T6SS activity within biofilms, which results in improved competition with strains lacking the T6SS. VxrB significantly contributes to both attack and defense via T6SS, while also influencing competition via regulation of biofilm matrix production. We further determined that both Vibrio polysaccharide (VPS) and the biofilm matrix protein RbmA can protect cells from T6SS attack within mature biofilms. By varying the spatial mixing of predator and prey cells in biofilms, we show that a high degree of mixing favors T6SS predator strains and that the presence of extracellular DNA in V. cholerae biofilms is a signature of T6SS killing. VxrB therefore regulates both T6SS attack and matrix-based T6SS defense, to control antagonistic interactions and competition outcomes during mixed-strain biofilm formation. IMPORTANCE This work demonstrates that the Vibrio cholerae type six secretion system (T6SS) can actively kill prey strains within the interior of biofilm populations with substantial impact on population dynamics. We additionally show that the response regulator VxrB contributes to both T6SS killing and protection from T6SS killing within biofilms. Components of the biofilm matrix and the degree of spatial mixing among strains also strongly influence T6SS competition dynamics. T6SS killing within biofilms results in increased localized release of extracellular DNA, which serves as an additional matrix component. These findings collectively demonstrate that T6SS killing can contribute to competition within biofilms and that this competition depends on key regulators, matrix components, and the extent of spatial population mixture during biofilm growth.


Assuntos
Sistemas de Secreção Tipo VI , Vibrio cholerae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Matriz Extracelular/metabolismo , Humanos , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Vibrio cholerae/metabolismo
6.
Polymers (Basel) ; 13(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672347

RESUMO

Using a simple esterification reaction of a hydroxyl group with an anhydride group, pristine lignin was successfully converted to a new lignin (COOH-lignin) modified with a terminal carboxyl group. This chemical modification of pristine lignin was confirmed by the appearance of new absorption bands in the FT-IR spectrum. Then, the pristine lignin and COOH-lignin were successfully incorporated into a poly(lactic acid) (PLA) matrix by a typical melt-mixing process. When applied to the COOH-lignin, interfacial adhesion performance between the lignin filler and PLA matrix was better and stronger than pristine lignin. Based on these results for the COOH-lignin/PLA biocomposites, the cost of printing PLA 3D filaments can be reduced without changing their thermal and mechanical properties. Furthermore, the potential of lignin as a component in PLA biocomposites adequate for 3D printing was demonstrated.

7.
J Microbiol Biotechnol ; 30(9): 1430-1435, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32627756

RESUMO

Bacterial cellulose (BC) has outstanding physical and chemical properties, including high crystallinity, moisture retention, and tensile strength. Currently, the major producer of BC is Komagataeibacter xylinus. However, due to limited tools of expression, this host is difficult to engineer metabolically to improve BC productivity. In this study, a regulated expression system for K. xylinus with synthetic ribosome binding site (RBS) was developed and used to engineer a BC biosynthesis pathway. A synthetic RBS library was constructed using green fluorescent protein (GFP) as a reporter, and three synthetic RBSs (R4, R15, and R6) with different strengths were successfully isolated by fluorescence-activated cell sorting (FACS). Using synthetic RBS, we optimized the expression of three homologous genes responsible for BC production, pgm, galU, and ndp, and thereby greatly increased it under both static and shaking culture conditions. The final titer of BC under static and shaking conditions was 5.28 and 3.67 g/l, respectively. Our findings demonstrate that reinforced metabolic flux towards BC through quantitative gene expression represents a practical strategy for the improvement of BC productivity.


Assuntos
Vias Biossintéticas/genética , Celulose/metabolismo , Gluconacetobacter xylinus/metabolismo , Ribossomos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Celulose/genética , Biblioteca Gênica , Gluconacetobacter xylinus/genética , Engenharia Metabólica , Análise do Fluxo Metabólico
8.
ACS Chem Biol ; 15(4): 904-914, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32186367

RESUMO

Second messenger signaling networks allow cells to sense and adapt to changing environmental conditions. In bacteria, the nearly ubiquitous second messenger molecule cyclic di-GMP coordinates diverse processes such as motility, biofilm formation, and virulence. In bacterial pathogens, these signaling networks allow the bacteria to survive changing environmental conditions that are experienced during infection of a mammalian host. While studies have examined the effects of cyclic di-GMP levels on virulence in these pathogens, it has not been possible to visualize cyclic di-GMP levels in real time during the stages of host infection. Toward this goal, we generate the first ratiometric, chemiluminescent biosensor scaffold that selectively responds to c-di-GMP. By engineering the biosensor scaffold, a suite of Venus-YcgR-NLuc (VYN) biosensors is generated that provide extremely high sensitivity (KD < 300 pM) and large changes in the bioluminescence resonance energy transfer (BRET) signal (up to 109%). As a proof-of-concept that VYN biosensors can image cyclic di-GMP in tissues, we show that the VYN biosensors function in the context of a tissue phantom model, with only ∼103-104 biosensor-expressing E. coli cells required for the measurement. Furthermore, we utilize the biosensor in vitro to assess changes in cyclic di-GMP in V. cholerae grown with different inputs found in the host environment. The VYN sensors developed here can serve as robust in vitro diagnostic tools for high throughput screening, as well as genetically encodable tools for monitoring the dynamics of c-di-GMP in live cells, and lay the groundwork for live cell imaging of c-di-GMP dynamics in bacteria within tissues and other complex environments.


Assuntos
Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais/métodos , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Luciferases/metabolismo , Proteínas Luminescentes/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Bactérias/genética , GMP Cíclico/análise , GMP Cíclico/metabolismo , Transferência de Energia , Escherichia coli , Proteínas de Escherichia coli/genética , Limite de Detecção , Luciferases/genética , Substâncias Luminescentes/química , Medições Luminescentes/métodos , Proteínas Luminescentes/genética , Estudo de Prova de Conceito , Ligação Proteica , Engenharia de Proteínas , Vibrio cholerae
9.
PLoS Genet ; 16(3): e1008703, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32176702

RESUMO

The assembly status of the V. cholerae flagellum regulates biofilm formation, suggesting that the bacterium senses a lack of movement to commit to a sessile lifestyle. Motility and biofilm formation are inversely regulated by the second messenger molecule cyclic dimeric guanosine monophosphate (c-di-GMP). Therefore, we sought to define the flagellum-associated c-di-GMP-mediated signaling pathways that regulate the transition from a motile to a sessile state. Here we report that elimination of the flagellum, via loss of the FlaA flagellin, results in a flagellum-dependent biofilm regulatory (FDBR) response, which elevates cellular c-di-GMP levels, increases biofilm gene expression, and enhances biofilm formation. The strength of the FDBR response is linked with status of the flagellar stator: it can be reversed by deletion of the T ring component MotX, and reduced by mutations altering either the Na+ binding ability of the stator or the Na+ motive force. Absence of the stator also results in reduction of mannose-sensitive hemagglutinin (MSHA) pilus levels on the cell surface, suggesting interconnectivity of signal transduction pathways involved in biofilm formation. Strains lacking flagellar rotor components similarly launched an FDBR response, however this was independent of the status of assembly of the flagellar stator. We found that the FDBR response requires at least three specific diguanylate cyclases that contribute to increased c-di-GMP levels, and propose that activation of biofilm formation during this response relies on c-di-GMP-dependent activation of positive regulators of biofilm production. Together our results dissect how flagellum assembly activates c-di-GMP signaling circuits, and how V. cholerae utilizes these signals to transition from a motile to a sessile state.


Assuntos
Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , Flagelos/metabolismo , Proteínas de Bactérias/genética , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Flagelos/fisiologia , Regulação Bacteriana da Expressão Gênica/genética , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/fisiologia , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
10.
mBio ; 10(6)2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796544

RESUMO

The dinucleotide second messenger c-di-GMP has emerged as a central regulator of reversible cell attachment during bacterial biofilm formation. A prominent cell adhesion mechanism first identified in pseudomonads combines two c-di-GMP-mediated processes: transcription of a large adhesin and its cell surface display via posttranslational proteolytic control. Here, we characterize an orthologous c-di-GMP effector system and show that it is operational in Vibrio cholerae, where it regulates two distinct classes of adhesins. Through structural analyses, we reveal a conserved autoinhibition mechanism of the c-di-GMP receptor that controls adhesin proteolysis and present a structure of a c-di-GMP-bound receptor module. We further establish functionality of the periplasmic protease controlled by the receptor against the two adhesins. Finally, transcription and functional assays identify physiological roles of both c-di-GMP-regulated adhesins in surface attachment and biofilm formation. Together, our studies highlight the conservation of a highly efficient signaling effector circuit for the control of cell surface adhesin expression and its versatility by revealing strain-specific variations.IMPORTANCEVibrio cholerae, the causative agent of the diarrheal disease cholera, benefits from a sessile biofilm lifestyle that enhances survival outside the host but also contributes to host colonization and infectivity. The bacterial second messenger c-di-GMP has been identified as a central regulator of biofilm formation, including in V. cholerae; however, our understanding of the pathways that contribute to this process is incomplete. Here, we define a conserved signaling system that controls the stability of large adhesion proteins at the cell surface of V. cholerae, which are important for cell attachment and biofilm formation. Insight into the regulatory circuit underlying biofilm formation may inform targeted strategies to interfere with a process that renders this bacterium remarkably adaptable to changing environments.


Assuntos
Adesinas Bacterianas/genética , Vibrio cholerae/genética , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , GMP Cíclico/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Transdução de Sinais/genética
11.
Opt Express ; 27(18): 25531-25543, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31510424

RESUMO

We report a transmittance controllable electrochromic color filter (TCECF) by incorporating new electrochromic leuco dyes and their optimized composition. Each primary color red (R), green (G), and blue (B) electrochromic filter has an excellent transmittance of more than 84% at 650 nm, 540 nm, 450 nm, and the color coordinates are controllable from white (0.332, 0.347) to deep-red (0.621, 0.344), deep-green (0.327, 0.646), and deep-blue (0.179, 0.085), respectively. Also, each TCECF has good coloration efficiencies of 188.7 cm2 C-1 (R), 189.3 cm2 C-1 (G), and 147.8 cm2 C-1 (B) with high optical density change. A full color producible electrochromic color filter (ECF) is designed and fabricated by integrating primary RGB color filters with a refractive index matching adhesive layer. The fabricated three-stack full color producible ECF enables high transmittance of about 61% for clear white light extraction, and it can produce various colors including RGB. This TCECF technology will be very useful for high light out-coupling electro-optical applications, such as smart lighting, smart window, and display.

12.
Proc Natl Acad Sci U S A ; 116(39): 19288-19293, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31501346

RESUMO

Bacterial cellulose nanofiber (BCNF) with high thermal stability produced by an ecofriendly process has emerged as a promising solution to realize safe and sustainable materials in the large-scale battery. However, an understanding of the actual thermal behavior of the BCNF in the full-cell battery has been lacking, and the yield is still limited for commercialization. Here, we report the entire process of BCNF production and battery manufacture. We systematically constructed a strain with the highest yield (31.5%) by increasing metabolic flux and improved safety by introducing a Lewis base to overcome thermochemical degradation in the battery. This report will open ways of exploiting the BCNF as a "single-layer" separator, a good alternative to the existing chemical-derived one, and thus can greatly contribute to solving the environmental and safety issues.

13.
Biotechnol Bioeng ; 116(12): 3372-3381, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31433066

RESUMO

Bacterial cellulose nanofiber (CNF) is a polymer with a wide range of potential industrial applications. Several Komagataeibacter species, including Komagataeibacter xylinus as a model organism, produce CNF. However, the industrial application of CNF has been hampered by inefficient CNF production, necessitating metabolic engineering for the enhanced CNF production. Here, we present complete genome sequence and a genome-scale metabolic model KxyMBEL1810 of K. xylinus DSM 2325 for metabolic engineering applications. Genome analysis of this bacterium revealed that a set of genes associated with CNF biosynthesis and regulation were present in this bacterium, which were also conserved in another six representative Komagataeibacter species having complete genome information. To better understand the metabolic characteristics of K. xylinus DSM 2325, KxyMBEL1810 was reconstructed using genome annotation data, relevant computational resources and experimental growth data generated in this study. Random sampling and correlation analysis of the KxyMBEL1810 predicted pgi and gnd genes as novel overexpression targets for the enhanced CNF production. Among engineered K. xylinus strains individually overexpressing heterologous pgi and gnd genes, either from Escherichia coli or Corynebacterium glutamicum, batch fermentation of a strain overexpressing the E. coli pgi gene produced 3.15 g/L of CNF in a complex medium containing glucose, which was the best CNF concentration achieved in this study, and 115.8% higher than that (1.46 g/L) obtained from the control strain. Genome sequence data and KxyMBEL1810 generated in this study should be useful resources for metabolic engineering of K. xylinus for the enhanced CNF production.


Assuntos
Celulose , Genoma Bacteriano , Genômica , Bacilos Gram-Positivos Asporogênicos Irregulares , Metabolômica , Nanofibras , Celulose/biossíntese , Celulose/genética , Bacilos Gram-Positivos Asporogênicos Irregulares/genética , Bacilos Gram-Positivos Asporogênicos Irregulares/metabolismo
14.
Phys Chem Chem Phys ; 21(13): 7083-7089, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30882125

RESUMO

In this study, we report an accurate and more reliable approach to estimate the dipole orientation of emitters especially phosphorescence, fluorescence and even thermally activated delayed fluorescence. The dipole orientation measurements are performed by examining the variation of the photoluminescence (PL) exciton decay rate from time-resolved PL and optical analysis. Our anisotropic dipole orientation results are consistent with those of previous reports. The studied measurement approach is very reliable and accurate to estimate the dipole orientation of any organic semiconductor materials regardless of whether they are doped or neat films.

15.
Int J Ophthalmol ; 12(1): 100-105, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30662848

RESUMO

AIM: To investigate nasolacrimal duct (NLD) volume in Korean patients and to examine the correlation between NLD volume and obstruction. METHODS: Of patients who underwent orbital computed tomography from March 2013 to January 2016, patients diagnosed with NLD obstruction were classified into the patient group and patients without obstruction were classified into the control group. The NLD volume was measured using the Image J program, which showed the NLD in axial, coronal, and sagittal images on computed tomography. RESULTS: The average value of men's NLD volume, 265.33±90.57 mm3, was significantly larger than women's, 211.87±68.61 mm3 (P=0.009). In the patient group, the NLD volume of the obstructed eyes, 242.49±82.93 mm3, and the non-obstructed eyes, 225.20±73.20 mm3, were significantly higher than the control group, 217.61±82.04 mm3 (P<0.001, P<0.001). CONCLUSION: The NLD volume is larger in men than in women in Korean adults. If there is NLD obstruction in women, the NLD volume is larger and it is judged that inflammatory reaction caused a chronic change in the bone around the NLD and affect the measurement of NLD volume.

16.
Front Microbiol ; 10: 3063, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010109

RESUMO

Biofilms provide bacteria with protection from environmental stresses and host immune defenses. The pathogenic marine bacterium Vibrio vulnificus forms biofilms and colonizes environmental niches such as oysters. The cabABC operon encodes an extracellular matrix protein CabA and the corresponding type I secretion system, which are essential for biofilm and rugose colony development of V. vulnificus. In this study, molecular biological analyses revealed the roles of three transcriptional regulators BrpR, BrpT, and BrpS in the regulatory pathway for the cabABC operon. BrpR induces brpT and BrpT in turn activates the cabABC operon in a sequential cascade, contributing to development of robust biofilm structures. BrpT also activates brpS, but BrpS represses brpT, constituting a negative feedback loop that stabilizes brpT expression. BrpT and BrpS directly bind to specific sequences upstream of cabA, and they constitute a feedforward loop in which BrpT induces brpS and together with BrpS activates cabABC, leading to precise regulation of cabABC expression. Accordingly, BrpS as well as BrpT plays a crucial role in complete development of rugose colonies. This elaborate network of three transcriptional regulators BrpR, BrpT, and BrpS thus tightly controls cabABC regulation, and contributes to successful development of robust biofilms and rugose colonies in V. vulnificus.

17.
Sci Rep ; 8(1): 16263, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30390004

RESUMO

Highly efficient single-stack hybrid cool white organic light-emitting diodes (OLEDs) having blue-yellow-blue multiple emitting layers (EMLs) are designed and constructed by utilizing blue thermally activated delayed fluorescent (TADF) and yellow phosphorescent emitters. The out-coupling efficiencies of yellow and blue emissions are maximized by tuning the ITO and total device thickness that satisfies both of antinode positions for yellow and blue emissions in a limited multiple EML thickness. To obtain a cool white emission, the exciton formation ratio in the blue-yellow-blue multiple EML system is controlled by manipulating the recombination zone through charge conductivity variation of host medium in the blue TADF EML. The resulting device exhibits cool white emission with very high maximum external quantum efficiency of 23.1% and CIE color coordinates of (0.324, 0.337). We anticipate that the studied approach will raise the viability of single-stack hybrid cool white OLEDs for high performance display applications.

18.
BMC Bioinformatics ; 19(1): 254, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29969981

RESUMO

BACKGROUND: Computation of reaction similarity is a pre-requisite for several bioinformatics applications including enzyme identification for specific biochemical reactions, enzyme classification and mining for specific inhibitors. Reaction similarity is often assessed at either two levels: (i) comparison across all the constituent substrates and products of a reaction, reaction level similarity, (ii) comparison at the transformation center with various degrees of neighborhood, transformation level similarity. Existing reaction similarity computation tools are designed for specific applications and use different features and similarity measures. A single system integrating these diverse features enables comparison of the impact of different molecular properties on similarity score computation. RESULTS: To address these requirements, we present SimCAL, an integrated system to calculate reaction similarity with novel features and capability to perform comparative assessment. SimCAL provides reaction similarity computation at both whole reaction level and transformation level. Novel physicochemical features such as stereochemistry, mass, volume and charge are included in computing reaction fingerprint. Users can choose from four different fingerprint types and nine molecular similarity measures. Further, a comparative assessment of these features is also enabled. The performance of SimCAL is assessed on 3,688,122 reaction pairs with Enzyme Commission (EC) number from MetaCyc and achieved an area under the curve (AUC) of > 0.9. In addition, SimCAL results showed strong correlation with state-of-the-art EC-BLAST and molecular signature based reaction similarity methods. CONCLUSIONS: SimCAL is developed in java and is available as a standalone tool, with intuitive, user-friendly graphical interface and also as a console application. With its customizable feature selection and similarity calculations, it is expected to cater a wide audience interested in studying and analyzing biochemical reactions and metabolic networks.


Assuntos
Fenômenos Bioquímicos/genética , Biologia Computacional/métodos , Humanos
19.
Opt Express ; 26(7): 8493-8502, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715815

RESUMO

Transparent organic light emitting diodes (TOLED) have widespread applications in the next-generation display devices particularly in the large size transparent window and interactive displays. Herein, we report high performance and stable attractive smart window displays using facile process. Advanced smart window display is realized by integrating the high performance light blocking screen and highly transparent white OLED panel. The full smart window display reveals a maximum transmittance as high as 64.2% at the wavelength of 600 nm and extremely good along with tunable ambient contrast ratio (171.94:1) compared to that of normal TOLED (4.54:1). Furthermore, the performance decisive light blocking screen has demonstrated an excellent optical and electrical characteristics such as i) high transmittance (85.56% at 562nm) at light-penetrating state, ii) superior absorbance (2.30 at 562nm) in light interrupting mode, iii) high optical contrast (85.50 at 562 nm), iv) high optical stability for more than 25,000 cycle of driving, v) fast switching time of 1.9 sec, and vi) low driving voltage of 1.7 V. The experimental results of smart window display are also validated using optical simulation. The proposed smart window display technology allows us to adjust the intensity of daylight entering the system quickly and conveniently.

20.
Chemphyschem ; 19(1): 116-122, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28906585

RESUMO

The thermal stability of lithium-rich layered oxide with the composition Li(Li1/6 Ni1/6 Co1/6 Mn1/2 )O2-x Fx (x=0.00 and 0.05) is evaluated for use as a cathode material in lithium-ion batteries. Thermogravimetric analysis, evolved gas analysis, and differential scanning calorimetry show that, upon fluorine doping, degradation of the lithium-rich layered oxides commences at higher temperatures and the exothermic reaction is suppressed. Hot box tests also reveal that the prismatic cell with the fluorine-doped powder does not explode, whereas that with the undoped one explodes at about 135 °C with a sudden temperature increase. XRD analysis indicates that fluorine doping imparts the lithium-rich layered oxide with better thermal stability by mitigating oxygen release at elevated temperatures that cause an exothermic reaction with the electrolyte. The origin of the reduced oxygen release from the fluorinated lithium-rich layered oxide is also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA