Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anticancer Res ; 44(6): 2459-2470, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821592

RESUMO

BACKGROUND/AIM: Gastric cancer, with its high global incidence and mortality rates, poses a significant challenge due to the rapid decline in patient survival upon metastasis. Understanding and combating metastasis are crucial in improving outcomes. The metastasis suppressor gene CD82 has demonstrated efficacy in inhibiting metastasis across various carcinomas but is frequently down-regulated. However, its role and regulatory mechanisms in gastric cancer remain elusive. MATERIALS AND METHODS: Utilizing public data, we assessed patient survival in relation to CD82 expression. CD82 expression in gastric cancer cell lines was evaluated via western blotting, and its impact on cell mobility was assessed through wound healing and Transwell assays. The demethylation of CD82 was induced using 5-aza-deoxycytidine, while methylation levels were detected via methylation-specific PCR. RESULTS: Low CD82 expression correlated with poor prognosis in patients, and down-regulation and over-expression of CD82 significantly affected cell mobility. Treatment with 5-aza-deoxycytidine restored CD82 expression in low-expressing cell lines, highlighting its methylation-dependent regulation. CONCLUSION: CD82 serves as a pivotal regulator of cell mobility in gastric cancer by suppressing metastasis. Its expression is attenuated in gastric cancer cells through promoter hypermethylation.


Assuntos
Movimento Celular , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Proteína Kangai-1 , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Proteína Kangai-1/genética , Proteína Kangai-1/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Regiões Promotoras Genéticas , Prognóstico , Decitabina/farmacologia , Metástase Neoplásica , Regulação para Baixo , Genes Supressores de Tumor
2.
Small ; 20(29): e2309490, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38651888

RESUMO

The confinement effect of catalytic nanoreactors containing metal catalysts within nanometer-sized volumes has attracted significant attention for their potential to enhance reaction rate and selectivity. Nevertheless, unregulated catalyst loading, aggregation, leaching, and limited reusability remain obstacles to achieving an efficient nanoreactor. A robust and durable catalytic membrane nanoreactor prepared by incorporating palladium nanocatalysts within a 3D-continuous nanoporous covalent framework membrane is presented. The reduction of palladium precursor occurs on the pore surface within 3D nanochannels, producing ultrafine palladium nanoparticles (Pd NPs) with their number density adjustable by varying metal precursor concentrations. The precise catalyst loading enables controlling the catalytic activity of the reactor while preventing excess metal usage. The facile preparation of Pd NP-loaded free-standing membrane materials allows hydrodechlorination in both batch and continuous flow modes. In batch mode, the catalytic activity is proportional to the loaded Pd amount and membrane area, while the membrane retains its activity upon repeated use. In continuous mode, the conversion remains above 95% for over 100 h, with the reactant solution passing through a single 50 µm-thick Pd-loaded membrane. The efficient nanoporous film-type catalytic nanoreactor may find applications in catalytic reactions for small chemical devices as well as in conventional chemistry and processes.

3.
Science ; 381(6658): 604-605, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37561858

RESUMO

Controlling the angle in atomic meshes could result in quantum properties on demand.

4.
Science ; 381(6658): 648-653, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37561867

RESUMO

The efficient, large-scale generation and control of photonic modes guided by van der Waals materials remains as a challenge despite their potential for on-chip photonic circuitry. We report three-atom-thick waveguides-δ waveguides-based on wafer-scale molybdenum disulfide (MoS2) monolayers that can guide visible and near-infrared light over millimeter-scale distances with low loss and an efficient in-coupling. The extreme thinness provides a light-trapping mechanism analogous to a δ-potential well in quantum mechanics and enables the guided waves that are essentially a plane wave freely propagating along the in-plane, but confined along the out-of-plane, direction of the waveguide. We further demonstrate key functionalities essential for two-dimensional photonics, including refraction, focusing, grating, interconnection, and intensity modulation, by integrating thin-film optical components with δ waveguides using microfabricated dielectric, metal, or patterned MoS2.

5.
J Am Chem Soc ; 145(9): 5261-5269, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36848619

RESUMO

Generating electricity from a salinity gradient, known as osmotic power, provides a sustainable energy source, but it requires precise nanoscale control of membranes for maximum performance. Here, we report an ultrathin membrane, where molecule-specific short-range interactions enable giant gateable osmotic power with a record high power density (2 kW/m2 for 1 M∥1 mM KCl). Our membranes are charge-neutral two-dimensional polymers synthesized from molecular building blocks and operate in a Goldilocks regime that simultaneously maintains high ionic conductivity and permselectivity. Molecular dynamics simulations quantitatively confirm that the functionalized nanopores are small enough for high selectivity through short-range ion-membrane interactions and large enough for fast cross-membrane transport. The short-range mechanism further enables reversible gateable operation, as demonstrated by polarity switching of osmotic power with additional gating ions.

6.
bioRxiv ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36711589

RESUMO

The geroscience hypothesis states that a therapy that prevents the underlying aging process should prevent multiple aging related diseases. The mTOR (mechanistic target of rapamycin)/insulin and NAD+ (nicotinamide adenine dinucleotide) pathways are two of the most validated aging pathways. Yet, it's largely unclear how they might talk to each other in aging. In genome-wide CRISPRa screening with a novel class of N-O-Methyl-propanamide-containing compounds we named BIOIO-1001, we identified lipid metabolism centering on SIRT3 as a point of intersection of the mTOR/insulin and NAD+ pathways. In vivo testing indicated that BIOIO-1001 reduced high fat, high sugar diet-induced metabolic derangements, inflammation, and fibrosis, each being characteristic of non-alcoholic steatohepatitis (NASH). An unbiased screen of patient datasets suggested a potential link between the anti-inflammatory and anti-fibrotic effects of BIOIO-1001 in NASH models to those in amyotrophic lateral sclerosis (ALS). Directed experiments subsequently determined that BIOIO-1001 was protective in both sporadic and familial ALS models. Both NASH and ALS have no treatments and suffer from a lack of convenient biomarkers to monitor therapeutic efficacy. A potential strength in considering BIOIO-1001 as a therapy is that the blood biomarker that it modulates, namely plasma triglycerides, can be conveniently used to screen patients for responders. More conceptually, to our knowledge BIOIO-1001 is a first therapy that fits the geroscience hypothesis by acting on multiple core aging pathways and that can alleviate multiple conditions after they have set in.

7.
Nat Commun ; 13(1): 7826, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535920

RESUMO

Twisted 2D materials form complex moiré structures that spontaneously reduce symmetry through picoscale deformation within a mesoscale lattice. We show twisted 2D materials contain a torsional displacement field comprised of three transverse periodic lattice distortions (PLD). The torsional PLD amplitude provides a single order parameter that concisely describes the structural complexity of twisted bilayer moirés. Moreover, the structure and amplitude of a torsional periodic lattice distortion is quantifiable using rudimentary electron diffraction methods sensitive to reciprocal space. In twisted bilayer graphene, the torsional PLD begins to form at angles below 3.89° and the amplitude reaches 8 pm around the magic angle of 1. 1°. At extremely low twist angles (e.g. below 0.25°) the amplitude increases and additional PLD harmonics arise to expand Bernal stacked domains separated by well defined solitonic boundaries. The torsional distortion field in twisted bilayer graphene is analytically described and has an upper bound of 22.6 pm. Similar torsional distortions are observed in twisted WS2, CrI3, and WSe2/MoSe2.

8.
Nature ; 611(7936): 479-484, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36289346

RESUMO

Conducting organic materials, such as doped organic polymers1, molecular conductors2,3 and emerging coordination polymers4, underpin technologies ranging from displays to flexible electronics5. Realizing high electrical conductivity in traditionally insulating organic materials necessitates tuning their electronic structure through chemical doping6. Furthermore, even organic materials that are intrinsically conductive, such as single-component molecular conductors7,8, require crystallinity for metallic behaviour. However, conducting polymers are often amorphous to aid durability and processability9. Using molecular design to produce high conductivity in undoped amorphous materials would enable tunable and robust conductivity in many applications10, but there are no intrinsically conducting organic materials that maintain high conductivity when disordered. Here we report an amorphous coordination polymer, Ni tetrathiafulvalene tetrathiolate, which displays markedly high electronic conductivity (up to 1,200 S cm-1) and intrinsic glassy-metallic behaviour. Theory shows that these properties are enabled by molecular overlap that is robust to structural perturbations. This unusual set of features results in high conductivity that is stable to humid air for weeks, pH 0-14 and temperatures up to 140 °C. These findings demonstrate that molecular design can enable metallic conductivity even in heavily disordered materials, raising fundamental questions about how metallic transport can exist without periodic structure and indicating exciting new applications for these materials.

9.
J Am Chem Soc ; 144(41): 19026-19037, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36194683

RESUMO

Photothermoelectric (PTE) materials are promising candidates for solar energy harvesting and photodetection applications, especially for near-infrared (NIR) wavelengths. Although the processability and tunability of organic materials are highly advantageous, examples of organic PTE materials are comparatively rare and their PTE performance is typically limited by poor photothermal (PT) conversion. Here, we report the use of redox-active Sn complexes of tetrathiafulvalene-tetrathiolate (TTFtt) as transmetalating agents for the synthesis of presynthetically redox tuned NiTTFtt materials. Unlike the neutral material NiTTFtt, which exhibits n-type glassy-metallic conductivity, the reduced materials Li1.2Ni0.4[NiTTFtt] and [Li(THF)1.5]1.2Ni0.4[NiTTFtt] (THF = tetrahydrofuran) display physical characteristics more consistent with p-type semiconductors. The broad spectral absorption and electrically conducting nature of these TTFtt-based materials enable highly efficient NIR-thermal conversion and good PTE performance. Furthermore, in contrast to conventional PTE composites, these NiTTFtt coordination polymers are notable as single-component PTE materials. The presynthetically tuned metal-to-insulator transition in these NiTTFtt systems directly modulates their PT and PTE properties.

10.
Nano Lett ; 22(17): 7180-7186, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36047815

RESUMO

Movement of a three-dimensional solid at an air-water interface is strongly influenced by the extrinsic interactions between the solid and the water. The finite thickness and volume of a moving solid causes capillary interactions and water-induced drag. In this Letter, we report the fabrication and dynamical imaging of freely floating MoS2 solids on water, which minimizes such extrinsic effects. For this, we delaminate a synthesized wafer-scale monolayer MoS2 onto a water surface, which shows negligible height difference across water and MoS2. Subsequently patterning by a laser generates arbitrarily shaped MoS2 with negligible in-plane strain. We introduce photoswitchable surfactants to exert a lateral force to floating MoS2 with a spatiotemporal control. Using this platform, we demonstrate a variety of two-dimensional mechanical systems that show reversible shape changes. Our experiment provides a versatile approach for designing and controlling a large array of atomically thin solids on water for intrinsically two-dimensional dynamics and mechanics.

11.
J Am Chem Soc ; 144(23): 10495-10506, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35679484

RESUMO

Patterning functional inorganic nanomaterials is an important process for advanced manufacturing of quantum dot (QD) electronic and optoelectronic devices. This is typically achieved by inkjet printing, microcontact printing, and photo- and e-beam lithography. Here, we investigate a different patterning approach that utilizes local heating, which can be generated by various sources, such as UV-, visible-, and IR-illumination, or by proximity heat transfer. This direct thermal lithography method, termed here heat-induced patterning of inorganic nanomaterials (HIPIN), uses colloidal nanomaterials with thermally unstable surface ligands. We designed several families of such ligands and investigated their chemical and physical transformations responsible for heat-induced changes of nanocrystal solubility. Compared to traditional photolithography using photochemical surface reactions, HIPIN extends the scope of direct optical lithography toward longer wavelengths of visible (532 nm) and infrared (10.6 µm) radiation, which is necessary for patterning optically thick layers (e.g., 1.2 µm) of light-absorbing nanomaterials. HIPIN enables patterning of features defined by the diffraction-limited beam size. Our approach can be used for direct patterning of metal, semiconductor, and dielectric nanomaterials. Patterned semiconductor QDs retain the majority of their as-synthesized photoluminescence quantum yield. This work demonstrates the generality of thermal patterning of nanomaterials and provides a new path for additive device manufacturing using diverse colloidal nanoscale building blocks.


Assuntos
Nanoestruturas , Pontos Quânticos , Temperatura Alta , Ligantes , Pontos Quânticos/química , Semicondutores
13.
Int J Mol Sci ; 23(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35457089

RESUMO

A mesopore-rich, hierarchically porous carbon monolith was prepared by carbonizing a polyisocyanurate network derived by thermal rearrangement of a polyurea network. The initial polyurea network was synthesized by the cross-linking polymerization of tetrakis(4-aminophenyl)methane (TAPM) and hexamethylene diisocyanate (HDI) in the sol-forming condition, followed by precipitation into nanoparticulate solids in a nonsolvent. The powder was molded into a shape and then heated at 200-400 °C to obtain the porous carbon precursor composed of the rearranged network. The thermolysis of urea bonds to amine and isocyanate groups, the subsequent cyclization of isocyanates to isocyanurates, and the vaporization of volatiles caused sintering of the nanoparticles into a monolithic network with micro-, meso-, and macropores. The rearranged network was carbonized to obtain a carbon monolith. It was found that the rearranged network, with a high isocyanurate ratio, led to a porous carbon with a high mesopore ratio. The electrical conductivity of the resulting carbon monoliths exhibited a rapid response to carbon dioxide adsorption, indicating efficient gas transport through the hierarchical pore structure.


Assuntos
Nanopartículas , Adsorção , Nanopartículas/química , Polimerização , Polímeros , Porosidade
14.
Nat Nanotechnol ; 17(4): 361-366, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35075299

RESUMO

Van der Waals (vdW) solids can be engineered with atomically precise vertical composition through the assembly of layered two-dimensional materials1,2. However, the artisanal assembly of structures from micromechanically exfoliated flakes3,4 is not compatible with scalable and rapid manufacturing. Further engineering of vdW solids requires precisely designed and controlled composition over all three spatial dimensions and interlayer rotation. Here, we report a robotic four-dimensional pixel assembly method for manufacturing vdW solids with unprecedented speed, deliberate design, large area and angle control. We used the robotic assembly of prepatterned 'pixels' made from atomically thin two-dimensional components. Wafer-scale two-dimensional material films were grown, patterned through a clean, contact-free process and assembled using engineered adhesive stamps actuated by a high-vacuum robot. We fabricated vdW solids with up to 80 individual layers, consisting of 100 × 100 µm2 areas with predesigned patterned shapes, laterally/vertically programmed composition and controlled interlayer angle. This enabled efficient optical spectroscopic assays of the vdW solids, revealing new excitonic and absorbance layer dependencies in MoS2. Furthermore, we fabricated twisted N-layer assemblies, where we observed atomic reconstruction of twisted four-layer WS2 at high interlayer twist angles of ≥4°. Our method enables the rapid manufacturing of atomically resolved quantum materials, which could help realize the full potential of vdW heterostructures as a platform for novel physics2,5,6 and advanced electronic technologies7,8.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Eletrônica
15.
Nano Lett ; 22(2): 726-732, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35005964

RESUMO

Photolithography and electron-beam lithography are the most common methods for making nanoscale devices from semiconductors. While these methods are robust for bulk materials, they disturb the electrical properties of two-dimensional (2D) materials, which are highly sensitive to chemicals used during lithography processes. Here, we report a resist-free lithography method, based on direct laser patterning and resist-free electrode transfer, which avoids unintentional modification to the 2D materials throughout the process. We successfully fabricate large arrays of field-effect transistors using MoS2 and WSe2 monolayers, the performance of which reflects the properties of the pristine materials. Furthermore, using these pristine devices as a reference, we reveal that among the various stages of a conventional lithography process, exposure to a solvent like acetone changes the electrical conductivity of MoS2 the most. This new approach will enable a rational design of reproducible processes for making large-scale integrated circuits based on 2D materials and other surface-sensitive materials.

16.
Small Methods ; 5(8): e2100239, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34927877

RESUMO

Despite considerable development in the field of single-atom catalysts (SACs) on carbon-based materials, the reported strategies for synthesizing SACs generally rely on top-down approaches, which hinder achieving both simple and universal synthesis routes that are simultaneously applicable to various metals and nanocarbons. Here, a universal strategy for fabricating nanocarbon based-SACs using a flash bottom-up arc discharge method to mitigate these issues is reported. The ionization of elements and their recombination process during arc discharge allows the simultaneous incorporation of single metal atoms (Mn, Fe, Co, Ni, and Pt) into the crystalline carbon lattice during the formation of carbon nanohorns (CNHs) and N-doped arc graphene. The coordination environment around the Co atoms of Co1 /CNH can be modulated by a mild post-treatment with NH3 . As a result, Co1 /CNH exhibits good oxygen reduction reaction activity, showing a 1.92 times higher kinetic current density value than the commercial Pt/C catalyst in alkaline media. In a single cell experiment, Co1 /CNH exhibits the highest maximum power density of 472 mW cm-2 compared to previously reported nonprecious metal-based SACs.

17.
Polymers (Basel) ; 13(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34833301

RESUMO

Copolyurea networks (co-UNs) were synthesized via crosslinking polymerization of a mixture of tetrakis(4-aminophenyl)methane (TAPM) and melamine with hexamethylene diisocyanate (HDI) using the organic sol-gel polymerization method. The subsequent thermal treatment of between 200 and 400 °C induced the sintering of the powdery polyurea networks to form porous frameworks via urea bond rearrangement and the removal of volatile hexamethylene moieties. Incorporating melamine into the networks resulted in a higher nitrogen content and micropore ratio, whereas the overall porosity decreased with the melamine composition. The rearranged network composed of the tetraamine/melamine units in an 80:20 ratio showed the highest carbon dioxide adsorption quantity at room temperature. The results show that optimizing the chemical structure and porosity of polyurea-based networks can lead to carbon dioxide adsorbents working at elevated temperatures.

18.
Nature ; 597(7878): 660-665, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34588671

RESUMO

The densification of integrated circuits requires thermal management strategies and high thermal conductivity materials1-3. Recent innovations include the development of materials with thermal conduction anisotropy, which can remove hotspots along the fast-axis direction and provide thermal insulation along the slow axis4,5. However, most artificially engineered thermal conductors have anisotropy ratios much smaller than those seen in naturally anisotropic materials. Here we report extremely anisotropic thermal conductors based on large-area van der Waals thin films with random interlayer rotations, which produce a room-temperature thermal anisotropy ratio close to 900 in MoS2, one of the highest ever reported. This is enabled by the interlayer rotations that impede the through-plane thermal transport, while the long-range intralayer crystallinity maintains high in-plane thermal conductivity. We measure ultralow thermal conductivities in the through-plane direction for MoS2 (57 ± 3 mW m-1 K-1) and WS2 (41 ± 3 mW m-1 K-1) films, and we quantitatively explain these values using molecular dynamics simulations that reveal one-dimensional glass-like thermal transport. Conversely, the in-plane thermal conductivity in these MoS2 films is close to the single-crystal value. Covering nanofabricated gold electrodes with our anisotropic films prevents overheating of the electrodes and blocks heat from reaching the device surface. Our work establishes interlayer rotation in crystalline layered materials as a new degree of freedom for engineering-directed heat transport in solid-state systems.

19.
Nano Lett ; 21(17): 7291-7297, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34415174

RESUMO

Flat optics aims for the on-chip miniaturization of optical systems for high-speed and low-power operation, with integration of thin and lightweight components. Here, we present atomically thin yet optically isotropic films realized by using three-dimensional (3D) topographic reconstruction of anisotropic two-dimensional (2D) films to balance the out-of-plane and in-plane optical responses on the subwavelength scale. We achieve this by conformal growth of monolayer transition metal dichalcogenide (TMD) films on nanodome-structured substrates. The resulting films show an order-of-magnitude increase in the out-of-plane susceptibility for enhanced angular performance, displaying polarization isotropy in the off-axis absorption, as well as improved photoluminescence emission profiles, compared to their flat-film counterparts. We further show that such 3D geometric programming of optical properties is applicable to different TMD materials, offering spectral generalization over for the entire visible range. Our approach presents a powerful platform for advancing the development of atomically thin flat optics with custom-designed light-matter interactions.


Assuntos
Dispositivos Ópticos
20.
ACS Nano ; 15(6): 10253-10263, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34096707

RESUMO

The valley pseudospin at the K and K' high-symmetry points in monolayer transition metal dichalcogenides (TMDs) has potential as an optically addressable degree of freedom in next-generation optoelectronics. However, intervalley scattering and relaxation of charge carriers leads to valley depolarization and limits practical applications. In addition, enhanced Coulomb interactions lead to pronounced excitonic effects that dominate the optical response and initial valley depolarization dynamics but complicate the interpretation of ultrafast spectroscopic experiments at short time delays. Employing broadband helicity-resolved two-dimensional electronic spectroscopy (2DES), we observe ultrafast (∼10 fs) intervalley coupling between all A and B valley exciton states that results in a complete breakdown of the valley index in large-area monolayer MoS2 films. These couplings and subsequent dynamics exhibit minimal excitation fluence or temperature dependence and are robust toward changes in sample grain size and inherent strain. Our observations strongly suggest that this direct intervalley coupling on the time scale of optical excitation is an inherent property of large-area MoS2 distinct from dynamic carrier or exciton scattering, phonon-driven processes, and multiexciton effects. This ultrafast intervalley coupling poses a fundamental challenge for exciton-based valleytronics in monolayer TMDs and must be overcome to fully realize large-area valleytronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA