Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Chemosphere ; 364: 143274, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39243896

RESUMO

Addressing the critical health concerns posed by domoic acid (DA), a neurotoxic compound produced by toxic marine algae and bioaccumulated in shellfish, necessitates the development of a rapid, precise, and robust detection system. Traditional DA detection methods have stability and sensitivity issues, which hinder effective toxin detection. To overcome these limitations, we developed a novel direct competitive enzyme-linked immunosorbent assay (dc-ELISA) platform that utilizes peptide-immobilized magnetic beads (MGBs/peptide). The affinity peptides identified through phage display and chemically synthesized with biotin labels present an innovative alternative to conventional antibodies for ELISA applications. Streptavidin-modified MGBs were used as the bioreceptor carriers to facilitate magnetic separation and simplify sample preparation, making the MGB/peptide-based dc-ELISA platform an ideal tool for comprehensive monitoring efforts. The developed platform exhibits a detection range of 0.5-10 ng mL-1 and a low limit of detection of 0.29 ng mL-1, offering enhanced sensitivity and cost-effectiveness. Moreover, our developed dc-ELISA demonstrated a high recovery rate when validated with DA-spiked CRM-mussel samples. This method overcomes the limitations of traditional detection techniques and offers a scalable and efficient approach to marine toxin surveillance with improved marine environmental monitoring and public health management.


Assuntos
Ensaio de Imunoadsorção Enzimática , Ácido Caínico , Toxinas Marinhas , Peptídeos , Frutos do Mar , Ácido Caínico/análogos & derivados , Ácido Caínico/análise , Ensaio de Imunoadsorção Enzimática/métodos , Frutos do Mar/análise , Peptídeos/química , Peptídeos/análise , Toxinas Marinhas/análise , Animais , Limite de Detecção , Bivalves/química , Contaminação de Alimentos/análise
2.
Adv Colloid Interface Sci ; 333: 103284, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39226798

RESUMO

Graphitic carbon nitride (g-C3N4) has garnered much attention as a promising 2D material in the realm of electrochemical sensors. It contains a polymeric matrix that can serve as an economical and non-toxic electrode material for the detection of a diverse range of analytes. However, its performance is impeded by a relatively limited active surface area and inherent instability. Although electrochemistry involving metal-doped g-C3N4 nanomaterials is rapidly progressing, it remains relatively unexplored. The metal doping of g-C3N4 augments the electrochemically active surface area of the resulting electrode, which has the potential to significantly enhance electrode kinetics and bolster catalytic activity. Consequentially, the main objective of this review is to provide insight into the intricacies of synthesizing and characterizing metal-doped g-C3N4. Furthermore, we comprehensively delve into the fundamental attributes of electrochemical sensors based on metal-doped g-C3N4, with a specific focus on healthcare and environmental applications. These applications encompass a meticulous exploration of detecting biomolecules, drug molecules, and organic pollutants.

3.
Talanta ; 279: 126571, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39029178

RESUMO

We develop color-encoded multicompartmental hydrogel (MH) microspheres tailored for multiplexed bioassays using a drop-based microfluidic approach. Our method involves the creation of triple emulsion drops that feature thin sacrificial oil layers separating two prepolymer phases. This configuration leads to the formation of poly(ethylene glycol) (PEG) multi-compartmental core-shell microspheres through photopolymerization, followed by the removal of the thin oil layers. The core compartments stably incorporate pigments, ensuring their retention within the hydrogel network without leakage, which facilitates reliable color encoding across varying spatial positions. Additionally, we introduce small molecule fluorescent labeling into the chemically functionalized shell compartments, achieving consistent distribution of functional components without the core's contamination. Importantly, our integrated one-pot conjugation of these color-encoded microspheres with affinity peptides enables the highly sensitive and selective detection of influenza virus antigens using a fluorescence bioassay, resulting in an especially low detection limit of 0.18 nM and 0.66 nM for influenza virus H1N1 and H5N1 antigens, respectively. This approach not only highlights the potential of our microspheres in clinical diagnostics but also paves the way for their application in a wide range of multiplexed assays.


Assuntos
Bioensaio , Hidrogéis , Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Microesferas , Polietilenoglicóis , Bioensaio/métodos , Hidrogéis/química , Vírus da Influenza A Subtipo H1N1/imunologia , Polietilenoglicóis/química , Cor , Corantes Fluorescentes/química , Limite de Detecção , Humanos
4.
Mikrochim Acta ; 191(7): 400, 2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879615

RESUMO

Ultrathin molecularly imprinted polymer (MIP) films were deposited on the surfaces of ZnO nanorods (ZNRs) and nanosheets (ZNSs) by electropolymerization to afford extended-gate field-effect transistor sensors for detecting phenytoin (PHT) in plasma. Molecular imprinting efficiency was optimized by controlling the contents of functional monomers and the template in the precursor solution. PHT sensing was performed in plasma solutions with various concentrations by monitoring the drain current as a function of drain voltage under an applied gate voltage of 1.5 V. The reliability and reproducibility of the fabricated sensors were evaluated through a solution treatment process for complete PHT removal and PHT adsorption-removal cycling, while selectivity was examined by analyzing responses to chemicals with structures analogous to that of PHT. Compared with the ZNS/extracted-MIP sensor and sensors with non-imprinted polymer (NIP) films, the ZNR/extracted-MIP sensor showed superior responses to PHT-containing plasma due to selective PHT adsorption, achieving an imprinting factor of 4.23, detection limit of 12.9 ng/mL, quantitation limit of 53.0 ng/mL, and selectivity coefficients of 3-4 (against tramadol) and ~ 5 (against diphenhydramine). Therefore, we believe that the MIP-based ZNR sensing platform is promising for the practical detection of PHT and other drugs and evaluation of their proper dosages.


Assuntos
Anticonvulsivantes , Limite de Detecção , Polímeros Molecularmente Impressos , Fenitoína , Transistores Eletrônicos , Óxido de Zinco , Anticonvulsivantes/sangue , Anticonvulsivantes/análise , Polímeros Molecularmente Impressos/química , Óxido de Zinco/química , Fenitoína/sangue , Fenitoína/análise , Fenitoína/química , Humanos , Impressão Molecular , Nanotubos/química , Adsorção , Reprodutibilidade dos Testes , Polímeros/química
5.
Biosens Bioelectron ; 255: 116269, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579624

RESUMO

Saxitoxin (STX), which is produced by certain dinoflagellate species, is a type of paralytic shellfish poisoning toxin that poses a serious threat to human health and the environment. Therefore, developing a technology for the convenient and cost-effective detection of STX is imperative. In this study, we developed an affinity peptide-imprinted polymer-based indirect competitive ELISA (ic-ELISA) without using enzyme-toxin conjugates. AuNP/Co3O4@Mg/Al cLDH was synthesized by calcining AuNP/ZIF-67@Mg/Al LDH, which was obtained by combining AuNPs, ZIF-67, and flower-like Mg/Al LDH. This synthesized nanozyme exhibited high catalytic activity (Km = 0.24 mM for TMB and 132.5 mM for H2O2). The affinity peptide-imprinted polymer (MIP) was imprinted with an STX-specific template peptide (STX MIP) on a multi-well microplate and then reacted with an STX-specific signal peptide (STX SP). The interaction between the STX SP and MIP was detected using a streptavidin-coated nanozyme (SA-AuNP/Co3O4@Mg/Al cLDH). The developed MIP-based ic-ELISA exhibited excellent selectivity and sensitivity, with a limit of detection of 3.17 ng/mL (equivalent: 0.317 µg/g). Furthermore, the system was validated using a commercial ELISA kit and mussel tissue samples, and it demonstrated a high STX recovery with a low coefficient of variation. These results imply that the developed ic-ELISA can be used to detect STX in real samples.


Assuntos
Técnicas Biossensoriais , Cobalto , Nanopartículas Metálicas , Óxidos , Humanos , Toxinas Marinhas/análise , Polímeros Molecularmente Impressos , Ouro , Peróxido de Hidrogênio , Frutos do Mar/análise , Saxitoxina , Ensaio de Imunoadsorção Enzimática/métodos , Peptídeos , Polímeros
6.
Chonnam Med J ; 60(1): 78-86, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38304131

RESUMO

There are limited data on outcomes after implantation of everolimus-eluting stents (EES) in East Asian patients with small vessel coronary lesions. A total of 1,600 patients treated with XIENCE EES (Abbott Vascular, CA, USA) were divided into the small vessel group treated with one ≤2.5 mm stent (n=119) and the non-small vessel group treated with one ≥2.75 mm stent (n=933). The primary end point was a patient-oriented composite outcome (POCO), a composite of all-cause death, myocardial infarction (MI), and any repeat revascularization at 12 months. The key secondary end point was a device-oriented composite outcome (DOCO), a composite of cardiovascular death, target-vessel MI, and target lesion revascularization at 12 months. The small vessel group was more often female, hypertensive, less likely to present with ST-elevation MI, and more often treated for the left circumflex artery, whereas the non-small vessel group more often had type B2/C lesions, underwent intravascular ultrasound, and received unfractionated heparin. In the propensity matched cohort, the mean stent diameter was 2.5±0.0 mm and 3.1±0.4 mm in the small and non-small vessel groups, respectively. Propensity-adjusted POCO at 12 months was 6.0% in the small vessel group and 4.3% in the non-small vessel group (p=0.558). There was no significant difference in DOCO at 12 months (small vessel group: 4.3% and non-small vessel group: 1.7%, p=0.270). Outcomes of XIENCE EES for small vessel disease were comparable to those for non-small vessel disease at 12-month clinical follow-up in real-world Korean patients.

7.
Anal Chim Acta ; 1295: 342287, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38355228

RESUMO

This paper reports the development of a highly sensitive and selective electrochemical peptide-based biosensor for the detection of the inflammatory disease biomarker, interleukin-1beta (IL-1ß). To this end, flower-like Au-Ag@MoS2-rGO nanocomposites were used as the signal amplification platform to achieve a label-free biosensor with a high sensitivity and selectivity. First, a high-affinity peptide for IL-1ß was identified through biopanning with M13 random peptide libraries, and was newly designed by incorporating cysteine at the C-terminus. An IL-1ß specific binding peptide was used as the bio-receptor, and the interaction between the IL-1ß binding peptide and IL-1ß was confirmed via enzyme-linked immunosorbent assay and various physicochemical and electrochemical analyses. Under optimal conditions, the biosensor achieved an ultrasensitive and specific IL-1ß detection in a wide linear concentration range of 0-250 ng/mL with a picomolar-level detection limit (∼2.4 pM), low binding constant (∼0.62 pM), and a low coefficient of variation (<1.65 %). The biosensor was successfully utilized for IL-1ß determination in the serum of Crohn's disease patients with a good correlation coefficient. In addition, the detection performance was comparable to that of commercially available IL-1ß ELISA kit. This indicates that the electrochemical peptide-based biosensor may offer a potentially valuable platform for the clinical diagnosis of various inflammatory disease biomarkers.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Humanos , Interleucina-1beta/análise , Peptídeos , Biomarcadores , Limite de Detecção , Ouro
8.
Artigo em Inglês | MEDLINE | ID: mdl-37903089

RESUMO

Influenza viruses are known to cause pandemic flu outbreaks through both inter-human and animal-to-human transmissions. Therefore, the rapid and accurate detection of such pathogenic viruses is crucial for effective pandemic control. Here, we introduce a novel sensor based on affinity peptide-immobilized hydrogel microspheres for the selective detection of influenza A virus (IAV) H3N2. To enhance the binding affinity performance, we identified novel affinity peptides using phage display and further optimized their design. The functional hydrogel microspheres were constructed using the drop microfluidic technique, employing a structure composed of natural (chitosan) and synthetic (poly(ethylene glycol) diacrylate and PEG 6 kDa) polymers with the activation of azadibenzocyclooctyne for the subsequent click chemistry reaction. The binding peptide-immobilized hydrogel microsphere (BP-Hyd) was characterized by field emission scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy and exhibited selective detection capability for the IAV H3N2. To capture the detected IAV H3N2, a Cy3-labeled IAV hemagglutinin antibody was utilized. By incorporating the affinity peptide with hydrogel microspheres, we achieved quantitative and selective detection of IAV H3N2 with a detection limit of 1.887 PFU mL-1. Furthermore, the developed suspension sensor exhibited excellent reproducibility and showed reusability potential. Our results revealed that the BP-Hyd-based fluorescence sensor platform could be feasibly employed to detect other pathogens because the virus-binding peptides can be easily replaced with other peptides through phage display, enabling selective and sensitive binding to different targets.

9.
Food Chem ; 428: 136811, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423105

RESUMO

Saxitoxin (STX) is a highly toxic small-molecule cyanotoxin that is water-soluble, stable in acidic media, and thermostable. STX is hazardous to human health and the environment in ocean, thus it is an important to detect it at very low concentrations. Herein, we developed an electrochemical peptide-based biosensor for the trace detection of STX in different sample matrix utilizing differential pulse voltammetry (DPV) signal. We synthesized the nanocomposite of zeolitic imidazolate framework-67 (ZIF-67) decorated bimetallic platinum (Pt) and ruthenium (Ru) nanoparticles (Pt-Ru@C/ZIF-67) using impregnation method. The nanocomposite modified with screen-printed electrode (SPE) was subsequently used to detect STX in the range of 1-1,000 ng mL-1, with a detection limit (LOD) of 26.7 pg mL-1. The developed peptide-based biosensor is highly selective and sensitive towards STX detection, thus it represents a promising strategy for the development of novel portable bioassay for monitoring various hazardous molecules in aquatic food chains.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Nanopartículas , Rutênio , Humanos , Platina/química , Saxitoxina , Técnicas Biossensoriais/métodos , Eletrodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
10.
J Clin Med ; 12(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373765

RESUMO

BACKGROUND: Calcified coronary lesions can cause stent under-expansion, malapposition, and polymer degradation, hence increasing the risk of adverse clinical outcomes. Percutaneous coronary intervention (PCI) guided by intravascular ultrasound (IVUS) has been used regularly to improve outcomes. Our primary aim was to evaluate the clinical efficacy of IVUS-guided PCI in calcified coronary lesions. METHODS: From August 2018 to December 2021, we prospectively included 300 patients in the CAPIRO study (CAlcified plaque in patients receiving Resolute Onyx®) at three educational hospitals in Jeonbuk Province. We studied 243 patients (265 lesions) who were followed up for over a year. Based on coronary calcification by IVUS analysis, the patient population was categorized into two groups (Group I: non/mild calcification; Group II: moderate/severe calcification (maximum calcium arc >180° and calcium length > 5 mm)). One-to-one Propensity Score Matching was used to match the baseline characteristics. The stent expansion rate was analyzed by recent criteria. The primary clinical outcome was Major Adverse Cardiac Events (MACE), which included Cardiac death, Myocardial Infarction (MI), and Target Lesion Revascularization (TLR). RESULTS: After follow-up time, the MACE rate in Group I was 1.99%, comparable to Group II's 1.09% (p = 0.594). The components of MACE did not significantly differ between the two groups. Based on absolute MSA or MSA/MVA at MSA site criteria, the stent expansion rate in Group II was lower than that of Group I. Nevertheless, based on recent relative criteria, the stent expansion rate in both groups was comparable. CONCLUSIONS: After more than a year of follow-up, IVUS-guided PCI in moderate/severe calcification lesions was associated with good clinical outcomes, which was comparable with non/mild calcification lesions. Future studies with a larger sample size and a more extended follow-up period are required to clarify our findings.

11.
Biosens Bioelectron ; 234: 115382, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37178497

RESUMO

C-reactive protein (CRP) is a phylogenetically highly conserved plasma protein found in blood serum, and an enhanced CRP level is indicative of inflammatory conditions such as infection and cancer, among others. In this work, we developed a novel high CRP-affinity peptide-functionalized label-free electrochemical biosensor for the highly sensitive and selective detection of CRP. Throughout biopanning with random peptide libraries, high affinity peptides for CRP was successfully identified, and then a series of synthetic peptide receptor, of which C-terminus was incorporated to gold binding peptide (GBP) as an anchoring motif was covalently immobilized onto gold nanoparticle (AuNPs) tethered polydopamine (PDA)‒black phosphorus (BP) (AuNPs@BP@PDA) nanocomposite electrode. Interaction between the CRP-binding peptide and CRP was confirmed via enzyme-linked immunosorbent assay along with various physicochemical and electrochemical analyses. Under the optimized experimental conditions, the proposed peptide-based biosensor detects CRP in the range of 0-0.036 µg/mL with a detection limit (LOD) of 0.7 ng/mL. The developed sensor effectively detects CRP in the real samples of serum and plasma of Crohn's disease patients. Thus, the fabricated peptide-based biosensor has potential applications in clinical diagnosis and medical applications.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanocompostos , Humanos , Proteína C-Reativa/análise , Ouro , Técnicas Eletroquímicas , Eletrodos , Peptídeos , Limite de Detecção
12.
Food Chem ; 422: 136243, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141762

RESUMO

Okadaic acid (OA) is a type of marine biotoxin produced by some species of dinoflagellates in marine environments. Consumption of shellfish contaminated with OA can cause diarrhetic shellfish poisoning (DSP) in humans with symptoms that typically include abdominal pain, diarrhea and vomiting. In this study, we developed an affinity peptide-based direct competition enzyme-linked immunosorbent assay (dc-ELISA) for the detection of OA in real samples. The OA-specific peptide was successfully identified via M13 biopanning and a series of peptides were chemically synthesized and characterized their recognition activities. The dc-ELISA system showed good sensitivity and selectivity with a half-maximal inhibitory concentration (IC50) of 148.7 ng/mL and a limit of detection (LOD) of 5.41 ng/mL (equivalent, 21.52 ng/g). Moreover, the effectiveness of the developed dc-ELISA was validated using OA-spiked shellfish samples, and the developed dc-ELISA showed a high recovery rate. These results suggest that the affinity peptide-based dc-ELISA can be a promising tool for detecting OA in shellfish samples.


Assuntos
Alimentos Marinhos , Frutos do Mar , Humanos , Ácido Okadáico/análise , Frutos do Mar/análise , Alimentos Marinhos/análise , Anticorpos Monoclonais , Peptídeos
13.
J Control Release ; 356: 337-346, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871645

RESUMO

Here, we report PNIPAm-co-PEGDA hydrogel shelled microcapsules with a thin oil layer to achieve tunable thermo-responsive release of the encapsulated small hydrophilic actives. We use a microfluidic device integrated with a temperature-controlled chamber for consistent and reliable production of the microcapsules by utilizing triple emulsion drops (W/O/W/O) with a thin oil layer as capsule templates. The interstitial oil layer between the aqueous core and the PNIPAm-co-PEGDA shell provides a diffusion barrier for the encapsulated active until the temperature reaches a critical point above which the destabilization of interstitial oil layer occurs. We find that the destabilization of the oil layer with temperature increase is caused by outward expansion of the aqueous core due to volume increase and the radial inward compression from the deswelling of the thermo-responsive hydrogel shell. The copolymerization of NIPAm with PEGDA increases the biocompatibility of the resulting microcapsule while offering the ability to alter the compressive modulus in broad ranges by simply varying crosslinker concentrations thereby to precisely tune the onset release temperature. Based on this concept, we further demonstrate that the release temperature can be enhanced up to 62 °C by adjusting the shell thickness even without varying the chemical composition of the hydrogel shell. Moreover, we incorporate gold nanorods within the hydrogel shell to spatiotemporally regulate the active release from the microcapsules by illuminating with non-invasive near infrared (NIR) light.


Assuntos
Hidrogéis , Polietilenoglicóis , Cápsulas/química , Temperatura
14.
Anal Chim Acta ; 1251: 341018, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-36925304

RESUMO

Influenza viruses are known to cause pandemic flu through inter-human and animal-to-human transmissions. Neuraminidase (NA), which is a surface glycoprotein of both influenza A and B viruses, is a minor immunogenic determinant; however, it has been proposed as an ideal candidate for a real testing. We successfully identified an affinity peptide which is specific to the influenza H5N1 virus NA via phage display technique and observed initially its binding affinities using enzyme-linked immunosorbent assay (ELISA). In addition, four synthetic peptides were chemically synthesized to develop an affinity peptide-based electrochemical biosensing system. Among all peptides tested, INA BP2 was selected as a potential candidate and subjected to square-wave voltammetry (SWV) for evaluating their detection performance. To enhance analytical performance, a three-dimensional porous bovine serum albumin (BSA)-MXene (BSA/MXene) matrix was applied. The surface morphology of the BSA/MXene film-deposited electrode was analyzed using X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Using SWV measurement, the BSA/MXene nanocomposite-based peptide sensor exhibited significant the dissociation constant (Kd = 9.34 ± 1.20 nM) and the limit of detection (LOD, 0.098 nM), resulting in good reproducibility, stability and recovery, even in the presence with spiked human plasma. These results demonstrate an alternative way of new bioanalytical sensing platform for developing more desirable sensitivity in other virus detection.


Assuntos
Técnicas Biossensoriais , Virus da Influenza A Subtipo H5N1 , Influenza Humana , Nanocompostos , Animais , Humanos , Soroalbumina Bovina/química , Influenza Humana/diagnóstico , Porosidade , Reprodutibilidade dos Testes , Peptídeos , Nanocompostos/química , Eletrodos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Limite de Detecção
15.
ACS Appl Bio Mater ; 6(4): 1621-1628, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36972355

RESUMO

The lethality of the bovine viral diarrhea virus (BVDV) in cattle involves inapparent infection and various, typically subclinical, syndromes. Cattle of all ages are vulnerable to infection with the virus. It also causes considerable economic losses, primarily due to reduced reproductive performance. In the absence of treatment that can completely cure infected animals, detection of BVDV relies on highly sensitive and selective diagnosis methods. In this study, an electrochemical detection system was developed as a useful and sensitive system for the detection of BVDV to suggest the direction of diagnostic technology through the development of conductive nanoparticle synthesis. As a countermeasure, a more sensitive and rapid BVDV detection system was developed using the synthesis of electroconductive nanomaterials black phosphorus (BP) and gold nanoparticle (AuNP). To increase the conductivity effect, AuNP was synthesized on the BP surface, and the stability of BP was improved by using dopamine self-polymerization. Moreover, its characterizations, electrical conductivity, selectivity, and sensitivity toward BVDV also have been investigated. The BP@AuNP-peptide-based BVDV electrochemical sensor exhibited a low detection limit of 0.59 copies mL-1 with high selectivity and long-term stability (retaining 95% of its initial performance over 30 days).


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Vírus da Diarreia Viral Bovina , Nanopartículas Metálicas , Animais , Bovinos , Ouro , Doença das Mucosas por Vírus da Diarreia Viral Bovina/diagnóstico , Peptídeos
16.
J Nanobiotechnology ; 21(1): 100, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944950

RESUMO

BACKGROUND: Cathepsin B, a cysteine protease, is considered a potential biomarker for early diagnosis of cancer and inflammatory bowel diseases. Therefore, more feasible and effective diagnostic method may be beneficial for monitoring of cancer or related diseases. RESULTS: A phage-display library was biopanned against biotinylated cathepsin B to identify a high-affinity peptide with the sequence WDMWPSMDWKAE. The identified peptide-displaying phage clones and phage-free synthetic peptides were characterized using enzyme-linked immunosorbent assays (ELISAs) and electrochemical analyses (impedance spectroscopy, cyclic voltammetry, and square wave voltammetry). Feasibilities of phage-on-a-sensor, peptide-on-a-sensor, and peptide-on-a-AuNPs/MXene sensor were evaluated. The limit of detection and binding affinity values of the peptide-on-a-AuNPs/MXene sensor interface were two to four times lower than those of the two other sensors, indicating that the peptide-on-a-AuNPs/MXene sensor is more specific for cathepsin B (good recovery (86-102%) and %RSD (< 11%) with clinical samples, and can distinguish different stages of Crohn's disease. Furthermore, the concentration of cathepsin B measured by our sensor showed a good correlation with those estimated by the commercially available ELISA kit. CONCLUSION: In summary, screening and rational design of high-affinity peptides specific to cathepsin B for developing peptide-based electrochemical biosensors is reported for the first time. This study could promote the development of alternative antibody-free detection methods for clinical assays to test inflammatory bowel disease and other diseases.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Catepsina B , Ouro , Peptídeos/química , Técnicas Biossensoriais/métodos , Biblioteca de Peptídeos , Ensaio de Imunoadsorção Enzimática/métodos
18.
Biotechnol J ; 18(1): e2200398, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36326163

RESUMO

Glutathione, a tripeptide consisting of cysteine, glutamic acid, and glycine, has multiple beneficial effects on human health. Previous studies have focused on producing glutathione in Saccharomyces cerevisiae by overexpressing γ-glutamylcysteine synthetase (GSH1) and glutathione synthetase (GSH2), which are the rate-limiting enzymes involved in the glutathione biosynthetic pathway. However, the production yield and titer of glutathione remain low due to the feedback inhibition on GSH1. To overcome this limitation, a synthetic isozyme system consisting of a novel bifunctional enzyme (GshF) from Gram-positive bacteria possessing both GSH1 and GSH2 activities, in addition to GSH1/GSH2, was introduced into S. cerevisiae, as GshF is insensitive to feedback inhibition. Given the HSP60 chaperonin system mismatch between bacteria and S. cerevisiae, co-expression of Group-I HSP60 chaperonins (GroEL and GroES) from Escherichia coli was required for functional expression of GshF. Among various strains constructed in this study, the SKSC222 strain capable of synthesizing glutathione with the synthetic isozyme system produced 240 mg L-1 glutathione with glutathione content and yield of 4.3% and 25.6 mgglutathione /gglucose , respectively. These values were 6.6-, 4.9-, and 4.3-fold higher than the corresponding values of the wild-type strain. In a glucose-limited fed-batch fermentation, the SKSC222 strain produced 2.0 g L-1 glutathione in 67 h. Therefore, this study highlights the benefits of the synthetic isozyme system in enhancing the production titer and yield of value-added chemicals by engineered strains of S. cerevisiae.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Glutationa , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo
19.
Chem Eng J ; 455: 140753, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36506703

RESUMO

The COVID-19 pandemic and the resulting supply chain disruption have rekindled crucial needs for safe storage and transportation of essential items. Despite recent advances, existing temperature monitoring technologies for cold chain management fall short in reliability, cost, and flexibility toward customized cold chain management for various products with different required temperature. In this work, we report a novel capsule-based colorimetric temperature monitoring system with precise and readily tunable temperature ranges. Triple emulsion drop-based microfluidic technique enables rapid production of monodisperse microcapsules with an interstitial phase-change oil (PCO) layer with precise control over its dimension and composition. Liquid-solid phase transition of the PCO layer below its freezing point triggers the release of the encapsulated payload yielding drastic change in color, allowing user-friendly visual monitoring in a highly sensitive manner. Simple tuning of the PCO layer's compositions can further broaden the temperature range in a precisely controlled manner. The proposed simple scheme can readily be formulated to detect both temperature rise in the frozen environment and freeze detection as well as multiple temperature monitoring. Combined, these results support a significant step forward for the development of customizable colorimetric monitoring of a broad range of temperatures with precision.

20.
Biosens Bioelectron ; 214: 114511, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35779412

RESUMO

Influenza viruses can cause epidemics through inter-human transmission, and the social consequences of viral transmission are incalculable. Current diagnostics for virus detection commonly relies on antibodies or nucleic acid as recognition reagent. However, a more advanced and general method for the facile development of new biosensors is increasing in demand. In this study, we report the fabrication of an ultra-sensitive peptide-based nanobiosensor using a nickel oxide (NiO)-reduced graphene oxide (rGO)/MXene nanocomposite to detect active influenza viruses (H1N1 and H5N2) and viral proteins. The sensing mechanism is based on the signal inhibition, the specific interaction between H1N1 (QMGFMTSPKHSV) and H5N1 (GHPHYNNPSLQL) binding peptides anchored on the NiO-rGO/MXene/glassy carbon electrode (GCE) surface and the viral surface protein hemagglutinin (HA) is the critical factor for the decrease in the peak current of the sensor. In this strategy, the NiO-rGO/MXene nanocomposite results in synergistic signal effects, including electrical conductivity, porosity, electroactive surface area, and active site availability when viruses are deposited on the electrode. Based on these observations, the results showed that the developed nanobiosensor was capable of highly sensitive and specific detection of their corresponding influenza viruses and viral proteins with a very low detection limit (3.63 nM of H1N1 and 2.39 nM for H5N1, respectively) and good recovery. The findings demonstrate that the proposed NiO-rGO/MXene-based peptide biosensor can provide insights for developing a wide range of clinical screening tools for detecting affected patients.


Assuntos
Técnicas Biossensoriais , Grafite , Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N2 , Nanocompostos , Técnicas Biossensoriais/métodos , Grafite/química , Humanos , Nanocompostos/química , Níquel , Proteínas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA