RESUMO
The pervasive distribution of microplastics (MPs) in aquatic ecosystems presents a significant threat to wildlife, with amphibians being particularly vulnerable due to their complex life cycles and ecological roles. This study investigates physiological and ecological impacts of aquatic MP exposure on juvenile black-spotted pond frogs (Pelophylax nigromaculatus), focusing on juvenile frog stage, history of life after metamorphosis. MP examinations in the intestine and body revealed accumulation primarily in the gastrointestinal tracts without evidence of systemic distribution. Experimental exposure to different concentrations of MPs demonstrated adverse effects on growth, physiological stress, and immune function. Notably, higher MP concentrations led to significant reductions in growth and innate immunity, indicative of compromised health. High concentrations of MPs were associated with elevated levels of corticosterone and antioxidant enzymes, indicating physiological stress. However, there was no evidence of extreme hormonal surges or imbalances in antioxidant enzyme activity, suggesting that amphibians were able to effectively cope with the levels of MPs used in the study. Changes in gastrointestinal morphology and fecal microbiota composition were observed, reflecting response of metabolic adaptation to MP exposure. At low concentrations of MPs, adaptive changes in digestive tract morphology and the maintenance of gut microbiota balance were observed, indicating that the frogs were able to manage the exposure below a certain threshold. In contrast, high concentrations of MPs had clear negative effects on amphibians, which could impact biodiversity and ecosystem stability. These findings also suggest that MPs may trigger adaptive responses at lower concentrations, while still posing significant environmental risks at higher levels.
RESUMO
Studies have demonstrated the therapeutic effects of Lindera plants. This study was undertaken to reveal the antihypertensive properties of Lindera erythrocarpa leaf ethanolic extract (LEL). Aorta segments of Sprague-Dawley rats were used to study the vasodilatory effect of LEL, and the mechanisms involved were evaluated by treating specific inhibitors or activators that affect the contractility of blood vessels. Our results revealed that LEL promotes a vasorelaxant effect through the nitric oxide/cyclic guanosine 3',5'-monophosphate pathway, blocking the Ca2+ channels, opening the K+ channels, and inhibiting the vasoconstrictive action of angiotensin II. In addition, the effects of LEL on blood pressure were investigated in spontaneously hypertensive rats by the tail-cuff method. LEL (300 or 1000 mg/kg) was orally administered to the rats, and 1000 mg/kg of LEL significantly lowered the blood pressure. Systolic blood pressure decreased by -20.06 ± 4.87%, and diastolic blood pressure also lowered by -30.58 ± 5.92% at 4 h in the 1000 mg/kg LEL group. Overall, our results suggest that LEL may be useful to treat hypertensive diseases, considering its vasorelaxing and hypotensive effects.
Assuntos
Anti-Hipertensivos , Pressão Sanguínea , GMP Cíclico , Hipertensão , Lindera , Óxido Nítrico , Extratos Vegetais , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Animais , Anti-Hipertensivos/farmacologia , Extratos Vegetais/farmacologia , Óxido Nítrico/metabolismo , Pressão Sanguínea/efeitos dos fármacos , GMP Cíclico/metabolismo , Masculino , Hipertensão/tratamento farmacológico , Ratos , Lindera/química , Canais de Potássio/metabolismo , Canais de Potássio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Canais de Cálcio/efeitos dos fármacos , Folhas de Planta/química , Vasodilatação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Vasodilatadores/farmacologiaRESUMO
This study examines how temperature influences the response of Japanese tree frogs (Dryophytes japonicus) to microplastic (MP) pollution, assessing whether temperature can regulate the harmful effects of MPs on their life history and the dispersal of MPs across habitats. This analysis aims to understand the ecological and physiological ramifications of MP pollution. Our results demonstrated an ontogenetic transfer of MP particles across amphibian metamorphosis, possibly allowing and facilitating the translocation of MPs across ecosystems. Temperature did not significantly affect the translocation of aquatic MPs to land. However, high temperatures significantly reduced mortality and hindlimb deformities caused by MPs, thereby mitigating their harmful impact on amphibian life histories. Importantly, our study found that MPs cause hindlimb deformities during amphibian metamorphosis, potentially linked to oxidative stress. Additionally, MP exposure and ingestion induced a plastic response in the morphology of the digestive tract and changes in the fecal microbiome, which were evident at high temperatures but not at low temperatures. The effects of MPs persisted even after the frogs transitioned to the terrestrial stage, suggesting that MPs may have complex, long-term impacts on amphibian population sustainability. Our results enhance the understanding of the intricate environmental challenges posed by MPs and underscore the significant role of temperature in ectotherms regarding ontogenetic impacts and pollutant interactions.
Assuntos
Anuros , Metamorfose Biológica , Microplásticos , Temperatura , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Anuros/metabolismo , Anuros/crescimento & desenvolvimento , Metamorfose Biológica/efeitos dos fármacos , Fezes/químicaRESUMO
Torilis japonica (TJ) fruit, is a herb that is traditionally used for erectile dysfunction (ED). Given the shared mechanisms of ED and hypertension through vascular smooth muscle, we hypothesized that TJ would be effective in vasodilation and blood pressure reduction. This study confirmed the authenticity of TJ samples via DNA barcoding and quantified the main active compound, torilin, using HPLC. TJ was extracted with distilled water (TJW) and 50% ethanol (TJE), yielding torilin contents of 0.35 ± 0.01% and 2.84 ± 0.02%, respectively. Ex vivo tests on thoracic aortic rings from Sprague-Dawley rats showed that TJE (3-300 µg/mL) induced endothelium-independent, concentration-dependent vasodilation, unlike TJW. Torilin caused concentration-dependent relaxation with an EC50 of 210 ± 1.07 µM. TJE's effects were blocked by a voltage-dependent K+ channel blocker and alleviated contractions induced by CaCl2 and angiotensin II. TJE inhibited vascular contraction induced by phenylephrine or KCl via extracellular CaCl2 and enhanced inhibition with nifedipine, indicating involvement of voltage-dependent and receptor-operated Ca2+ channels. Oral administration of TJE (1000 mg/kg) significantly reduced blood pressure in spontaneously hypertensive rats. These findings suggest TJ extract's potential for hypertension treatment through vasorelaxant mechanisms, though further research is needed to confirm its efficacy and safety.
Assuntos
Pressão Sanguínea , Endotélio Vascular , Frutas , Extratos Vegetais , Ratos Sprague-Dawley , Vasodilatação , Animais , Ratos , Vasodilatação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Masculino , Frutas/química , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Anti-Hipertensivos/farmacologia , Vasodilatadores/farmacologia , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Ratos Endogâmicos SHR , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Hipertensão/fisiopatologiaRESUMO
BACKGROUND: In patients with coronary artery disease treated with permanent polymer-coated drug-eluting stents (DES), the persistent presence of a less biocompatible polymer might delay arterial healing. Thin strut polymer-free DES have the potential to improve clinical outcomes and reduce the duration of dual antiplatelet therapy (DAPT). The purpose of this first-in-human study was to assess the safety and effectiveness of a novel polymer-free DES in patients with de novo coronary lesions. The TIGERevolutioN® stent (CG Bio Co., Ltd., Seoul, Korea) consists of a cobalt chromium platform with a strut thickness of 70 µm and a surface treated with titanium dioxide onto which everolimus-eluting stent (EES) is applied abluminally (6 µg/mm of stent length) without utilization of a polymer. METHODS: A total of 20 patients were enrolled, with de novo coronary lesions (stable or unstable angina) and > 50% diameter stenosis in a vessel 2.25 to 4.00 mm in diameter and ≤ 40 mm in length for angiographic, optical coherence tomography (OCT), and clinical assessment at 8 months. All patients received DAPT after stent implantation. The primary endpoint was angiographic in-stent late lumen loss (LLL) at 8 months. RESULTS: Twenty patients with 20 lesions were treated with TIGERevolutioN®. At 8 months, in-stent LLL was 0.7 ± 0.4 mm. On OCT, percent area stenosis was 29.2 ± 9.4% and stent strut coverage was complete in all lesions. No adverse cardiovascular event occurred at 8 months. CONCLUSION: The new polymer-free EES was safe and effective with low LLL and excellent strut coverage at 8 months of follow-up. TRIAL REGISTRATION: Trial Registration: Clinical Research Information Service Identifier: KCT0005699.
Assuntos
Angiografia Coronária , Doença da Artéria Coronariana , Stents Farmacológicos , Everolimo , Titânio , Tomografia de Coerência Óptica , Humanos , Everolimo/uso terapêutico , Titânio/química , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Doença da Artéria Coronariana/terapia , Intervenção Coronária Percutânea , Polímeros/química , Resultado do Tratamento , Inibidores da Agregação Plaquetária/uso terapêuticoRESUMO
The incidence of cardiovascular diseases, such as high blood pressure, is increasing worldwide, owing to population aging and irregular lifestyle habits. Previous studies have reported the vasorelaxant effects of Prunus yedoensis bark methanol extract. However, various solvent extracts of P. yedoensis bark and their vascular relaxation mechanisms have not been sufficiently studied. We prepared extracts of P. yedoensis bark using various solvents (water, 30% ethanol, and 70% ethanol). P. yedoensis bark 30% ethanol extract (PYB-30E) decreased the expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in human umbilical vein endothelial cells (HUVECs) activated with 200 ng/mL TNF-α. Additionally, PYB-30E showed vasodilatory effects on isolated rat aortic rings. This was confirmed to be the result of the activation of the NO/cGMP pathway, regulation of non-selective calcium-activated K+ channels, and calcium channel blockade. Additionally, PYB-30E significantly reduced systolic and diastolic blood pressure in spontaneously hypertensive rats (SHR). Taken together, our results indicated that PYB-30E is a candidate functional material with preventive and therapeutic effects against hypertension.
RESUMO
Previous studies have revealed the medicinal and therapeutic effects of Galla chinensis. However, no studies have focused on the antihypertensive effects of G. chinensis. Therefore, we aimed to determine the vasorelaxant and hypotensive effects of G. chinensis 50% ethanolic extract (GCE). To evaluate the vascular relaxing effect of GCE, experiments were conducted using aortic segments dissected from Sprague Dawley rats. GCE showed a vasorelaxant effect via the nitric oxide/cyclic guanosine 3',5'-monophosphate pathway, inhibiting Ca2+ channels, and activating K+ channels. The hypotensive effects of GCE were evaluated in spontaneously hypertensive rats (SHRs). The SHRs were randomly divided into a control group and orally administered GCE group (100 or 300 mg/kg). The systolic and diastolic blood pressure decreased significantly by -19.47 ± 4.58% and -31.14 ± 7.66% in the GCE 100 mg/kg group, and -21.64 ± 2.40% and -31.91 ± 5.75% in the GCE 300 mg/kg group at 4 h after administration. Considering its vasorelaxant and hypotensive effects, our results indicate that GCE may be a valuable solution for the control of hypertension. However, further studies on the long-term administration and toxicity of GCE are required.
Assuntos
Anti-Hipertensivos , Pressão Sanguínea , Extratos Vegetais , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Vasodilatadores , Animais , Vasodilatadores/farmacologia , Ratos , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Masculino , Extratos Vegetais/farmacologia , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Óxido Nítrico/metabolismo , Vasodilatação/efeitos dos fármacos , GMP Cíclico/metabolismo , Aorta/efeitos dos fármacos , Medicamentos de Ervas Chinesas , TaninosRESUMO
Gut microbiota impact host physiology, though simultaneous investigations in ectothermic vertebrates are rare. Particularly, amphibians may exhibit more complex interactions between host physiology and the effects of gut microbiota due to the combination of seasonal changes and complex life histories. In this study, we assessed the relationships among food resources, gut bacterial communities, and host physiology in frogs (Phelophylax nigromaculatus), taking into account seasonal and life history variations. We found that food sources were not correlated with physiological parameters but had some relationships with the gut bacterial community. Variations in gut bacterial community and host physiology were influenced by the combined effects of seasonal differences and life history, though mostly driven by seasonal differences. An increase in Firmicutes was associated with higher fat content, reflecting potential fat storage in frogs during the non-breeding season. The increase in Bacteroidetes resulted in lower fat content in adult frogs and decreased immunity in juvenile frogs during the breeding season, demonstrating a direct link. Our results suggest that the gut microbiome may act as a link between food conditions and physiological status, and that the combined effect of seasons and life history could reinforce the relationship between gut microbiota and physiological status in ectothermic animals. While food sources may influence the gut microbiota of ectotherms, we contend that temperature-correlated seasonal variation, which predominately influences most ectotherms, is a significant factor.
Assuntos
Anuros , Microbioma Gastrointestinal , Estações do Ano , Animais , Microbioma Gastrointestinal/fisiologia , Anuros/fisiologia , Anuros/microbiologia , Bactérias , BacteroidetesRESUMO
Hypertension is the crucial modifiable risk factor for cardiovascular diseases, and efforts to identify functional foods that are effective for hypertension control are increasing. The nutgall tree (NT, Rhus chinensis Mill.) is used in traditional medicine and food because of its medicinal value. However, the role of NT in hypertension has not been investigated. Therefore, the hypotensive effect of NT leaf ethanol extract (NTE) was investigated in spontaneously hypertensive rats (SHRs). SHRs were allocated to three groups (control, 300, or 1000 mg/kg NTE), and blood pressure was measured before and after oral administration. Systolic and diastolic blood pressure significantly decreased in the NTE 1000 mg/kg group and was the lowest at 2 h after administration (-26.4 ± 10.3, -33.5 ± 9.8%, respectively). Daily NTE administration for five days also resulted in a similar effect. Further, the vasorelaxant effects and related mechanisms were investigated in the aortas of Sprague Dawley rats. NTE showed the dose-dependent blood-vessel-relaxing effect, and its mechanism involves the NO-sGC-cGMP pathway, activation of K+ channels, and reduction in the vasoconstrictive action of angiotensin II. Therefore, our study provides basic data indicating the potential use of NTE as a functional food for high blood pressure.
RESUMO
Eustachian tube balloon dilatation (ETBD) has shown promising results in the treatment of ET dysfunction (ETD); however, recurrent symptoms after ETBD frequently occur in patients with refractory ETD. The excessive pressure of balloon catheter during ETBD may induce the tissue hyperplasia and fibrotic changes around the injured mucosa. Sirolimus (SRL), an antiproliferative agent, inhibits tissue proliferation. An SRL-coated balloon catheter was fabricated using an ultrasonic spray coating technique with a coating solution composed of SRL, purified shellac, and vitamin E. This study aimed to investigate effectiveness of ETBD with a SRL-coated balloon catheter to prevent tissue proliferation in the rat ET after ETBD. In 21 Sprague-Dawley rats, the left ET was randomly divided into the control (drug-free ETBD; n = 9) and the SRL (n = 9) groups. All rats were sacrificed for histological examination immediately after and at 1 and 4 weeks after ETBD. Three rats were used to represent the normal ET. The SRL-coated ETBD significantly suppressed tissue proliferation caused by mechanical injuries compared with the control group. ETBD with SRL-coated balloon catheter was effective and safe to maintain ET luminal patency without tissue proliferation at the site of mechanical injuries for 4 weeks in a rat ET model.
Assuntos
Otopatias , Tuba Auditiva , Humanos , Ratos , Animais , Dilatação/métodos , Ratos Sprague-Dawley , Cateterismo/métodos , Otopatias/terapia , Otopatias/diagnóstico , Resultado do TratamentoRESUMO
Cnidium monnieri (L.) Cusson, a member of the Apiaceae family, is rich in coumarins, such as imperatorin and osthole. Cnidium monnieri fruit (CM) has a broad range of therapeutic potential that can be used in anti-bacterial, anti-cancer, and sexual dysfunction treatments. However, its efficacy in lowering blood pressure through vasodilation remains unknown. This study aimed to assess the potential therapeutic effect of CM 50% ethanol extract (CME) on hypertension and the mechanism of its vasorelaxant effect. CME (1-30 µg/mL) showed a concentration-dependent vasorelaxation on constricted aortic rings in Sprague Dawley rats induced by phenylephrine via an endothelium-independent mechanism. The vasorelaxant effect of CME was inhibited by blockers of voltage-dependent and Ca2+-activated K+ channels. Additionally, CME inhibited the vascular contraction induced by angiotensin II and CaCl2. The main active compounds of CM, i.e., imperatorin (3-300 µM) and osthole (1-100 µM), showed a concentration-dependent vasorelaxation effect, with half-maximal effective concentration values of 9.14 ± 0.06 and 5.98 ± 0.06 µM, respectively. Orally administered CME significantly reduced the blood pressure of spontaneously hypertensive rats. Our research shows that CME is a promising treatment option for hypertension. However, further studies are required to fully elucidate its therapeutic potential.
Assuntos
Anti-Hipertensivos , Pressão Sanguínea , Cnidium , Etanol , Frutas , Furocumarinas , Hipertensão , Extratos Vegetais , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Vasodilatadores , Animais , Cnidium/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Pressão Sanguínea/efeitos dos fármacos , Ratos , Frutas/química , Vasodilatadores/farmacologia , Masculino , Anti-Hipertensivos/farmacologia , Etanol/química , Furocumarinas/farmacologia , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Vasodilatação/efeitos dos fármacos , Cumarínicos/farmacologia , Cumarínicos/químicaRESUMO
Biliary strictures are characterized by the narrowing of the bile duct lumen, usually caused by surgical biliary injury, cancer, inflammation, and scarring from gallstones. Endoscopic stent placement is a well-established method for the management of biliary strictures. However, maintaining optimal mechanical properties of stents and designing surfaces that can prevent stent-induced tissue hyperplasia and biofilm formation are challenges in the fabrication of biodegradable biliary stents (BBSs) for customized treatment. This study proposes a novel approach to fabricating functionalized polymer BBSs with nanoengineered surfaces using 3D printing. The 3D printed stents, fabricated from bioactive silica poly(ε-carprolactone) (PCL) via a sol-gel method, exhibited tunable mechanical properties suitable for supporting the bile duct while ensuring biocompatibility. Furthermore, a nanoengineered surface layer was successfully created on a sirolimus (SRL)-coated functionalized PCL (fPCL) stent using Zn ion sputtering-based plasma immersion ion implantation (S-PIII) treatment to enhance the performance of the stent. The nanoengineered surface of the SRL-coated fPCL stent effectively reduced bacterial responses and remarkably inhibited fibroblast proliferation and initial burst release of SRL in vitro systems. The physicochemical properties and biological behaviors, including in vitro biocompatibility and in vivo therapeutic efficacy in the rabbit bile duct, of the Zn-SRL@fPCL stent demonstrated its potential as a versatile platform for clinical applications in bile duct tissue engineering.
RESUMO
The gut microbiota maintains a deeply symbiotic relationship with host physiology, intricately engaging with both internal (endogenous) and external (exogenous) factors. Anurans, especially those in temperate regions, face the dual challenges of significant external influences like hibernation and complex internal variances tied to different life histories. In our research, we sought to determine whether different life stages (juvenile versus adult) of the Japanese wrinkled frog (Glandirana rugosa) lead to distinct shifts in gut bacterial communities during winter (hibernation) and its subsequent transition to spring. As hypothesized, we observed a more pronounced variability in the gut bacterial diversity and abundance in juvenile frogs compared to their adult counterparts. This suggests that the gut environment may be more resilient or stable in adult frogs during their hibernation period. However, this pronounced difference was confined to the winter season; by spring, the diversity and abundance of gut bacteria in both juvenile and adult frogs aligned closely. Specifically, the variance in gut bacterial diversity and composition between winter and spring appears to mirror the frogs' ecological adaptations. During the hibernation period, a dominance of Proteobacteria suggests an emphasis on supporting intracellular transport and maintaining homeostasis, as opposed to active metabolism in the frogs. Conversely, come spring, an uptick in bacterial diversity coupled with a dominance of Firmicutes and Bacteroidetes points to an upsurge in metabolic activity post-hibernation, favoring enhanced nutrient assimilation and energy metabolism. Our findings highlight that the relationship between the gut microbiome and its host is dynamic and bidirectional. However, the extent to which changes in gut bacterial diversity and composition contribute to enhancing hibernation physiology in frogs remains an open question, warranting further investigation.
Assuntos
Microbioma Gastrointestinal , Hibernação , Animais , Microbioma Gastrointestinal/fisiologia , Hibernação/fisiologia , Estações do Ano , Anuros , Bactérias/genética , Ranidae/microbiologiaRESUMO
Natural compounds, known for diverse pharmacological properties, have attracted attention as potential sources for hypertension treatment. Previous studies have revealed the hypotensive effect and vascular relaxation of prunetin, a natural compound derived from Prunus yedoensis. However, the potential blood pressure-lowering and vasorelaxant effects of sakuranetin, another representative compound found in plants belonging to the genus Prunus, have remained unexplored. We aimed to fill this gap by investigating the hypotensive and vasorelaxant effects of sakuranetin in rats. Results indicated that sakuranetin, particularly in the sakuranetin 20 mg/kg group, led to significant reductions in systolic blood pressure (SBP) and diastolic blood pressure (DBP) by -14.53 ± 5.64% and -19.83 ± 6.56% at 4 h after administration. In the sakuranetin 50 mg/kg group, the SBP and DBP decreased by -13.27 ± 6.86% and -16.62 ± 10.01% at 2 h and by -21.61 ± 4.49% and -30.45 ± 5.21% at 4 h after administration. In addition, we identified the vasorelaxant effects of sakuranetin, attributing its mechanisms to the inhibition of calcium influx and the modulation of angiotensin II. Considering its hypotensive and vasorelaxant effects, sakuranetin could potentially serve as an antihypertensive agent. However, further research is required to evaluate the safety and long-term efficacy.
RESUMO
Blood-contacting devices must be designed to minimize the risk of bloodstream-associated infections, thrombosis, and intimal lesions caused by surface friction. However, achieving effective prevention of both bloodstream-associated infections and thrombosis poses a challenge due to the conflicting nature of antibacterial and antithrombotic activities, specifically regarding electrostatic interactions. This study introduced a novel biocompatible hydrogel of sodium alginate and zwitterionic carboxymethyl chitosan (ZW@CMC) with antibacterial and antithrombotic activities for use in catheters. The ZW@CMC hydrogel demonstrates a superhydrophilic surface and good hygroscopic properties, which facilitate the formation of a stable hydration layer with low friction. The zwitterionic-functionalized CMC incorporates an additional negative sulfone group and increased negative charge density in the carboxyl group. This augmentation enhances electrostatic repulsion and facilitates the formation of hydration layer. This leads to exceptional prevention of blood clotting factor adhesion and inhibition of biofilm formation. Subsequently, the ZW@CMC hydrogel exhibited biocompatibility with tests of in vitro cytotoxicity, hemolysis, and catheter friction. Furthermore, in vivo tests of antithrombotic and systemic inflammation models with catheterization indicated that ZW@CMC has significant advantages for practical applications in cardiovascular-related and sepsis treatment. This study opens a new avenue for the development of chitosan-based multifunctional hydrogel for applications in blood-contacting devices.
RESUMO
The hibernation of amphibians can offer a unique window into overwintering adaptation processes and host-gut microbiota interactions through changes in metabolic availability and homeostasis. We attempted to identify differences in the physiology and gut microbiome during and after hibernation in Japanese wrinkled frogs (Glandirana rugosa), an aquatic overwintering amphibian. After hibernation, the high alpha and beta diversity of the gut bacterial community appears to reflect the more diverse and complex environmental conditions. During winter, Proteobacteria dominated the majority of the gut bacterial community, likely due to high oxygen saturation. After hibernation, Firmicutes and Bacteroidetes increased, which are supportive of host metabolism by gut microbiota. Corticosterone also showed high values and variances after hibernation, presumably allowing the population to remain adaptable across a broad range of environmental gradients. Innate immunity was high after hibernation but exhibited low variation among populations, which supports the idea of a prioritized investment in immunity after hibernation. Blood biochemistry suggests that aquatic overwintering frogs have a mechanism to adapt through overhydration and regulate homeostasis through water excretion associated with the kidney and urine after hibernation. Frog populations exhibit variations and adaptability in gut microbiota and physiology during and after hibernation: Through this, they may demonstrate an adaptive response that regulates metabolic availability in preparation for unpredictable environmental changes. We also propose that the maintenance of Proteobacteria during hibernation can support the colonization of Firmicutes and Bacteroidetes after hibernation, underscoring the need to study the complex effects of gut microbiota across multiple life stages.
Assuntos
Microbioma Gastrointestinal , Hibernação , Estações do Ano , Animais , Microbioma Gastrointestinal/fisiologia , Hibernação/fisiologia , Adaptação Fisiológica , Bactérias , Anuros/fisiologia , Anuros/microbiologia , Corticosterona/sangue , Corticosterona/metabolismo , Imunidade InataRESUMO
BACKGROUND: Current polymer-based drug-eluting stents (DESs) have fundamental issues about inflammation and delayed re-endothelializaton of the vessel wall. Substance-P (SP), which plays an important role in inflammation and endothelial cells, has not yet been applied to coronary stents. Therefore, this study compares poly lactic-co-glycolic acid (PLGA)-based everolimus-eluting stents (PLGA-EESs) versus 2-methacryloyloxyethyl phosphorylcholine (MPC)-based SP-eluting stents (MPC-SPs) in in-vitro and in-vivo models. METHODS: The morphology of the stent surface and peptide/drug release kinetics from stents were evaluated. The in-vitro proliferative effect of SP released from MPC-SP is evaluated using human umbilical vein endothelial cell. Finally, the safety and efficacy of the stent are evaluated after inserting it into a pig's coronary artery. RESULTS: Similar to PLGA-EES, MPC-SP had a uniform surface morphology with very thin coating layer thickness (2.074 µm). MPC-SP showed sustained drug release of SP for over 2 weeks. Endothelial cell proliferation was significantly increased in groups treated with SP (n = 3) compared with the control (n = 3) and those with everolimus (n = 3) (SP: 118.9 ± 7.61% vs. everolimus: 64.3 ± 12.37% vs. the control: 100 ± 6.64%, p < 0.05). In the animal study, the percent stenosis was higher in MPC-SP group (n = 7) compared to PLGA-EES group (n = 7) (MPC-SP: 28.6 ± 10.7% vs. PLGA-EES: 16.7 ± 6.3%, p < 0.05). MPC-SP group showed, however, lower inflammation (MPC-SP: 0.3 ± 0.26 vs. PLGA-EES: 1.2 ± 0.48, p < 0.05) and fibrin deposition (MPC-SP: 1.0 ± 0.73 vs. PLGA-EES: 1.5 ± 0.59, p < 0.05) around the stent strut. MPC-SP showed more increased expression of cluster of differentiation 31, suggesting enhanced re-endothelialization. CONCLUSION: Compared to PLGA-EES, MPC-SP demonstrated more decreased inflammation of the vascular wall and enhanced re-endothelialization and stent coverage. Hence, MPC-SP has the potential therapeutic benefits for the treatment of coronary artery disease by solving limitations of currently available DESs.
Assuntos
Reestenose Coronária , Stents Farmacológicos , Intervenção Coronária Percutânea , Suínos , Humanos , Animais , Everolimo/farmacologia , Substância P , Vasos Coronários , Stents , Inflamação , Células Endoteliais da Veia Umbilical HumanaRESUMO
Drynaria rhizome is a herbal medicine used for strengthening bones and treating bone diseases in East Asia. Although obesity is considered to benefit bone formation, it has been revealed that visceral fat accumulation can promote osteoporosis. Given the complex relationship between bone metabolism and obesity, bonestrengthening medicines should be evaluated while considering the effects of obesity. The present study investigated the effects of Drynaria rhizome extract (DRE) on highfat diet (HFD)induced obese mice. DRE was supplemented with the HFD. Body weight, food intake, the expression levels of lipogenesis transcription factors, including sterol regulatory element binding protein (SREBP)1, peroxisome proliferatoractivated receptor (PPAR)γ and adenosine monophosphateactivated protein kinase (AMPK)α, and AMPK activation were evaluated. Mice fed DRE and a HFD exhibited reduced body weight without differences in food intake compared with those in the HFD group. Furthermore, DRE; upregulated AMPKα of epididymal one; downregulated SREBP1 and PPARγ, as determined using western blotting and quantitative polymerase chain reaction, respectively. Decreased lipid accumulation were observed in both fat pad and liver of HFDfed mice, which were suppressed by DRE treatment. These results demonstrated the potential of DRE as a dietary natural product for strengthening bones and managing obesity.
Assuntos
Fármacos Antiobesidade , Dieta Hiperlipídica , Camundongos , Animais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Dieta Hiperlipídica/efeitos adversos , Proteínas Quinases Ativadas por AMP/metabolismo , Receptores Ativados por Proliferador de Peroxissomo , Rizoma , Extratos Vegetais/farmacologia , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Peso Corporal , Camundongos Endogâmicos C57BL , Fármacos Antiobesidade/farmacologia , Camundongos ObesosRESUMO
This paper proposes fault diagnosis methods aimed at proactively preventing potential safety issues in robot systems, particularly human coexistence robots (HCRs) used in industrial environments. The data were collected from durability tests of the driving module for HCRs, gathering time-series vibration data until the module failed. In this study, to apply classification methods in the absence of post-failure data, the initial 50% of the collected data were designated as the normal section, and the data from the 10 h immediately preceding the failure were selected as the fault section. To generate additional data for the limited fault dataset, the Wasserstein generative adversarial networks with gradient penalty (WGAN-GP) model was utilized and residual connections were added to the generator to maintain the basic structure while preventing the loss of key features of the data. Considering that the performance of image encoding techniques varies depending on the dataset type, this study applied and compared five image encoding methods and four CNN models to facilitate the selection of the most suitable algorithm. The time-series data were converted into image data using image encoding techniques including recurrence plot, Gramian angular field, Markov transition field, spectrogram, and scalogram. These images were then applied to CNN models, including VGGNet, GoogleNet, ResNet, and DenseNet, to calculate the accuracy of fault diagnosis and compare the performance of each model. The experimental results demonstrated significant improvements in diagnostic accuracy when employing the WGAN-GP model to generate fault data, and among the image encoding techniques and convolutional neural network models, spectrogram and DenseNet exhibited superior performance, respectively.
RESUMO
Hypertension requires proper management because of the increased risk of cardiovascular disease and death. For this purpose, functional foods containing tannins have been considered an effective treatment. Sanguisorbae radix (SR) also contains various tannins; however, there have been no studies on its vasorelaxant or antihypertensive effects. In this study, the vasorelaxant effect of the ethanol extract of SR (SRE) was investigated in the thoracic aorta of Sprague Dawley rats. SRE (1, 3, 10, 30, and 100 µg/mL) showed this effect in a dose-dependent manner, and its mechanisms were related to the NO/cGMP pathway and voltage-gated K+ channels. Concentrations of 300 and 1000 µg/mL blocked the influx of extracellular Ca2+ and inhibited vasoconstriction. Moreover, 100 µg/mL of SRE showed a relaxing effect on blood vessels constricted by angiotensin II. The hypotensive effect of SRE was investigated in spontaneously hypertensive rats (SHR) using the tail-cuff method. Blood pressure significantly decreased 4 and 8 h after 1000 mg/kg of SRE administration. Considering these hypotensive effects and the vasorelaxant mechanisms of SRE, our findings suggests that SRE can be used as a functional food to prevent and treat hypertension. Further studies are needed for identifying the active components and determining the optimal dosage.