RESUMO
Human health relies heavily on the vascular endothelium. Here, we propose a novel engineered endothelium model (EEM), which recapitulated both normal vascular function and pathology. An artificial basement membrane (aBM), where porous polyvinyl alcohol hydrogel was securely integrated with human fibroblast-derived, decellularized extracellular matrix on both sides was fabricated first and followed by endothelial cells (ECs) and pericytes (PCs) adhesion, respectively. Our EEM formed robust adherens junction (VE-cad) and built an impermeable barrier with time, along with the nitric oxide (NO) secretion. In our EEM, ECs and PCs interacted each other via aBM and led to hemoglobin alpha 1 (Hb-α1) development, which was involved in NO control and was strongly interconnected with VE-cad as well. A resilient property of EEM under inflammatory milieu was also confirmed by VE-cad and barrier recovery with time. In particular interest, foam cells formation, a hallmark of atherosclerotic initiation was successfully recapitulated in our EEM, where a series of sequential events were confirmed: human monocytes adhesion, transendothelial migration, and oxidized low-density lipoprotein uptake by macrophages. Collectively, our EEM is excellent in recapitulating not only normal endothelium but early pathologic one, thereby enabling EEM to be a physiologically relevant model for vascular study and disease modeling.
RESUMO
In the tumor microenvironment, macrophages play crucial roles resulting in tumor suppression and progression, depending on M1 and M2 macrophages, respectively. In particular, macrophage-derived exosomes modulate the gene expression of cancer cells by delivering miRNAs which downregulate specific genes. The communication between macrophages and cancer cells is especially important in immunogenic tumors such as melanoma, where the cancer pogression is significantly influenced by the surrounding immune cells. In this study, we identified that M1 macrophages secrete exosomal miR-29c-3p in the co-culture system with melanoma cells. Simultaneously, ENPP2, the target of miR-29c-3p, decreased in the melanoma cells which are co-cultured with M1 macrophages. Additionally, we observed that the reduction of ENPP2 alleviates melanoma cell migration and invasion, due to the changes of cholesterol metabolism and ECM remodeling. Based on these findings, we demonstrated that M1 macrophages suppress aggressiveness of melanoma cells via exosomal miR-29c-3p-mediated knock-down of ENPP2 in cancer cells.
RESUMO
Human corneal transplantation is still the only option to restore the function of corneal endothelial cells (CECs). Therefore, there is an urgent need for hCEC delivery systems to replace the human donor cornea. Here, we propose an alginate hydrogel (AH)-based delivery system, where a human fibroblast-derived, decellularized extracellular matrix (ECM) was physically integrated with AH. This AH securely combined with the ECM (ECM-AH) was approximately 50 µm thick, transparent, and permeable. The surface roughness and surface potential provided ECM-AH with a favorable microenvironment for CEC adhesion and growth in vitro. More importantly, ECM-AH could support the structural (ZO-1) and functional (Na+/K+-ATPase) markers of hCECs, as assessed via western blotting and quantitative polymerase chain reaction, which were comparable with those of a ferritic nitrocarburizing (FNC)-coated substrate (a positive control). The cell density per unit area was also significantly better with ECM-AH than the FNC substrate at day 7. A simulation test of cell engraftment in vitro showed that hCECs were successfully transferred into the decellularized porcine corneal tissue, where they were mostly alive. Furthermore, we found out that the endothelial-mesenchymal transition (EnMT)-inductive factors (Smad2 and vimentin) were largely declined with the hCECs grown on ECM-AH, whereas the EnMT inhibitory factor (Smad7) was significantly elevated. The difference was statistically significant compared to that of the FNC substrate. Moreover, we also observed that TGF-ß1-treated hCECs showed faster recovery of cell phenotype on the ECM. Taken together, our study demonstrates that ECM-AH is a very promising material for hCEC culture and delivery, which endows an excellent microenvironment for cell function and phenotype maintenance.
Assuntos
Alginatos , Matriz Extracelular , Fibroblastos , Hidrogéis , Humanos , Alginatos/química , Alginatos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Fibroblastos/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Animais , Endotélio Corneano/citologia , Endotélio Corneano/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Suínos , Proliferação de Células/efeitos dos fármacos , Transição Endotélio-MesênquimaRESUMO
Herein, a novel extracellular matrix (ECM) hydrogel is proposed fabricated solely from decellularized, human fibroblast-derived matrix (FDM) toward advanced wound healing. This FDM-gel is physically very stable and viscoelastic, while preserving the natural ECM diversity and various bioactive factors. Subcutaneously transplanted FDM-gel provided a permissive environment for innate immune cells infiltration. Compared to collagen hydrogel, excellent wound healing indications of FDM-gel treated in the full-thickness wounds are noticed, particularly hair follicle formation via highly upregulated ß-catenin. Sequential analysis of the regenerated wound tissues disclosed that FDM-gel significantly alleviated pro-inflammatory cytokine and promoted M2-like macrophages, along with significantly elevated vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) level. A mechanistic study demonstrated that macrophages-FDM interactions through cell surface integrins α5ß1 and α1ß1 resulted in significant production of VEGF and bFGF, increased Akt phosphorylation, and upregulated matrix metalloproteinase-9 activity. Interestingly, blocking such interactions using specific inhibitors (ATN161 for α5ß1 and obtustatin for α1ß1) negatively affected those pro-healing growth factors secretion. Macrophages depletion animal model significantly attenuated the healing effect of FDM-gel. This study demonstrates that the FDM-gel is an excellent immunomodulatory material that is permissive for host cells infiltration, resorbable with time, and interactive with macrophages, where it thus enables regenerative matrix remodeling toward a complete wound healing.
Assuntos
Matriz Extracelular , Fibroblastos , Hidrogéis , Macrófagos , Cicatrização , Humanos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Cicatrização/efeitos dos fármacos , Animais , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Matriz Extracelular/metabolismo , Camundongos , Modelos Animais de Doenças , MasculinoRESUMO
BACKGROUND: The secretomes of mesenchymal stem cells (MSCs) have great therapeutic potential and thereby their efficient delivery into the target site is of particular interest. Here, we propose a new strategy of hMSCs-derived secretomes delivery for advanced wound healing upon harnessing the working principle of extracellular matrix (ECM)-growth factors interaction in vivo. METHODS: We prepared an alginate hydrogel based wound patch, where it contains both human MSC-derived secretomes and ECM. The ECM was obtained from the decellularization of in vitro cultured human lung fibroblasts. The alginate solution was blended with ECM suspension, crosslinked, air-dried, then rehydrated with the secretomes contained in the concentrated conditioned media (CCM) as a highly saturated form of conditioned media (CM). We tested four different groups, with or without the ECM to investigate not only the role of ECM but the therapeutic effect of secretomes. RESULTS: The secretomes reserved many, diverse bioactive factors, such as VEGF, HGF, IGFBPs, IL-6, and IL-8. Alginate/ECM/CCM (AEC) patch could hold significantly larger amount of secretomes and release them longer than the other groups. Our AEC patch was the most effective in stimulating not only cell migration and proliferation but the collagen synthesis of dermal fibroblasts in vitro. Moreover, the AEC patch-treated full-thickness skin wounds disclosed significantly better wound healing indications: cell recruitment, neovascularization, epidermis thickness, keratinocyte migration, and mature collagen deposition, as assessed via histology (H&E, Herovici staining) and immunofluorescence, respectively. In particular, our AEC patch enabled a phenotype shift of myofibroblast into fibroblast over time and led to mature blood vessel formation at 14 day. CONCLUSIONS: We believe that ECM certainly contributed to generate a secretomes-enriched milieu via ECM-secretomes interactions and thereby such secretomes could be delivered more efficiently, exerting significant therapeutic impact either individually or collectively during wound healing process.
RESUMO
The tribological properties and preosteoblast behavior of an RF magnetron-sputtered amorphous carbon coating on a Si (100) substrate were evaluated. The graphite target power was varied from 200 to 500 W to obtain various coating structures. The amorphous nature of the coatings was confirmed via Raman analysis. The contact angle also increased from 58º to 103º, which confirmed the transformation of the a-C surface from a hydrophilic to hydrophobic nature with an increasing graphite target power. A minimum wear rate of about 4.73 × 10-8 mm3/N*mm was obtained for an a-C coating deposited at a 300 W target power. The 300 W and 400 W target power coatings possessed good tribological properties, and the 500 W coating possessed better cell viability and adhesion on the substrate. The results suggest that the microstructure, wettability, tribological behavior and biocompatibility of the a-C coating were highly dependent on the target power of the graphite. A Finite Element Analysis (FEA) showed a considerable increase in the Von Mises stress as the mesh size decreased. Considering both the cell viability and tribological properties, the 400 W target power coating was identified to have the best tribological property as well as biocompatibility.
RESUMO
Erectile dysfunction (ED) is a common and feared complication of radical prostatectomy (RP) for prostate cancer. Recently, tissue engineering for post-prostatectomy ED has been attempted in which controlled interactions between cells, growth factors, and the extracellular matrix (ECM) are important for the structural integrity if nerve regeneration. In this study, we evaluated the effects of a biomechanical ECM patch on the morphology and behavior of human bone marrow-derived mesenchymal stem cells (hBMSCs) in a bilateral cavernous nerve injury (BCNI) rat model. The ECM patch, made of decellularized human fibroblast-derived ECM (hFDM) and a biocompatible polyvinyl alcohol (PVA) hydrogel, was tested with human bone marrow-derived mesenchymal stem cells (hBMSCs) on a bilateral cavernous nerve injury (BCNI) rat model. In vitro analysis showed that the hFDM/PVA + hBMSCs patches significantly increased neural development markers. In vivo experiments demonstrated that the rats treated with the hFDM/PVA patch had higher ICP/MAP ratios, higher ratios of smooth muscle to collagen, increased nNOS content, higher levels of eNOS protein expression, and higher cGMP levels compared to the BCNI group. These results indicate that the hFDM/PVA patch is effective in promoting angiogenesis, smooth muscle regeneration, and nitrergic nerve regeneration, which could contribute to improved erectile function in post-prostatectomy ED.
RESUMO
The mechanism by which stromal cells fill voids in injured tissue remains a fundamental question in regenerative medicine. While it is well-established that fibroblasts fill voids by depositing extracellular matrix (ECM) proteins as they migrate toward the wound site, little is known about their ability to adopt an epithelial-like purse-string behavior. To investigate fibroblast behavior during gap closure, we created an artificial wound with a large void space. We discovered that fibroblasts could form a free-standing bridge over deep microvoids, closing the void via purse-string contraction, a mechanism previously thought to be unique to epithelial wound closure. The findings also revealed that myosin II mediated contractility and intercellular adherent junctions were required for the closure of the fibroblast gap in our fabricated three-dimensional artificial wound. To fulfill their repair function under the specific microenvironmental conditions of wounds, fibroblasts appeared to acquire the structural features of epithelial cells, namely, contractile actin bundles that span over multiple cells along the boundary. These findings shed light on a novel mechanism by which stromal cells bridge the 3D gap during physiological processes such as morphogenesis and wound healing.
Assuntos
Actinas , Cicatrização , Actinas/metabolismo , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Miosina Tipo II , Cicatrização/fisiologiaRESUMO
Here, we report a transparent, biodegradable, and cell-adhesive carrier that is securely coupled with the extracellular matrix (ECM) for corneal endothelial cell (CEC) transplantation. To fabricate a CEC carrier, poly(lactide-co-caprolactone) (PLCL) solution was poured onto the decellularized ECM (UMDM) derived from in vitro cultured umbilical cord blood-MSCs. Once completely dried, ECM-PLCL was then peeled off from the substrate. It was 20 µm thick, transparent, rich in fibronectin and collagen type IV, and easy to handle. Surface characterizations exhibited that ECM-PLCL was very rough (54.0 ± 4.50 nm) and uniformly covered in high density by ECM and retained a positive surface charge (65.2 ± 57.8 mV), as assessed via atomic force microscopy. Human CECs (B4G12) on the ECM-PLCL showed good cell attachment, with a cell density similar to the normal cornea. They could also maintain a cell phenotype, with nicely formed cell-cell junctions as assessed via ZO-1 and N-cadherin at 14 days. This was in sharp contrast to the CEC behaviors on the FNC-coated PLCL (positive control). A function-related marker, Na+/K+-ATPase, was also identified via western blot and immunofluorescence. In addition, primary rabbit CECs showed a normal shape and they could express structural and functional proteins on the ECM-PLCL. A simulation test confirmed that CECs loaded on the ECM-PLCL were successfully engrafted into the decellularized porcine corneal tissue, with a high engraftment level and cell viability. Moreover, ECM-PLCL transplantation into the anterior chamber of the rabbit eye for 8 weeks proved the maintenance of normal cornea properties. Taken together, this study demonstrates that our ECM-PLCL can be a promising cornea endothelium graft with an excellent ECM microenvironment for CECs.
Assuntos
Matriz Extracelular , Células-Tronco Mesenquimais , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Polímeros/química , Coelhos , Suínos , Engenharia TecidualRESUMO
BACKGROUND: Macrophages, with many different phenotypes play a major role during wound healing process, secreting the cytokines crucial to angiogenesis, cell recruitment and ECM remodeling. Therefore, macrophage-derived cytokines may be attractive therapeutic resource for wound healing. METHODS: To obtain a conditioned media (CM) from macrophages, human monocyte THP-1 cells were seeded on TCP or human fibroblast-derived matrix (hFDM) and they were differentiated into M1 or M2 phenotype using distinct protocols. A combination of different substrates and macrophage phenotypes produced M1- and M2-CM or M1-hFDM- and M2-hFDM-CM, respectively. Proteome microarray determines the cytokine contents in those CMs. CMs-treated human dermal fibroblast (hDFB) was analyzed using collagen synthesis and wound scratch assay. Concentrated form of the CM (CCM), obtained by high-speed centrifugation, was administered to a murine full-thickness wound model using alginate patch, where alginate patch was incubated in the M2-CCM overnight at 4 °C before transplantation. On 14 day post-treatment, examination was carried out through H&E and Herovici staining. Keratinocyte and M2 macrophages were also evaluated via immunofluorescence staining. RESULTS: Cytokine analysis of CMs found CCL1, CCL5, and G-CSF, where CCL5 is more dominant. We found increased collagen synthesis and faster wound closure in hDFB treated with M2-CM. Full-thickness wounds treated by M2-hFDM-CCM containing alginate patch showed early wound closure, larger blood vessels, increased mature collagen deposition, enhanced keratinocyte maturation and more M2-macrophage population. CONCLUSION: Our study demonstrated therapeutic potential of the CM derived from M2 macrophages, where the cytokines in the CM may have played an active role for enhanced wound healing.
Assuntos
Macrófagos , Cicatrização , Alginatos , Animais , Colágeno , Meios de Cultivo Condicionados/farmacologia , Citocinas , CamundongosRESUMO
Cell-derived matrix (CDM) has proven its therapeutic potential and been utilized as a promising resource in tissue regeneration. In this study, we prepared a human fibroblast-derived matrix (FDM) by decellularization of in vitro cultured cells and transformed the FDM into a nano-sized suspended formulation (sFDM) using ultrasonication. The sFDM was then homogeneously mixed with Pluronic F127 and hyaluronic acid (HA), to effectively administer sFDM into target sites. Both sFDM and sFDM containing hydrogel (PH/sFDM) were characterized via immunofluorescence, sol-gel transition, rheological analysis, and biochemical factors array. We found that PH/sFDM hydrogel has biocompatible, mechanically stable, injectable properties and can be easily administered into the external and internal target regions. sFDM itself holds diverse bioactive molecules. Interestingly, sFDM-containing serum-free media helped maintain the metabolic activity of endothelial cells significantly better than those in serum-free condition. PH/sFDM also promoted vascular endothelial growth factor (VEGF) secretion from monocytes in vitro. Moreover, when we evaluated therapeutic effects of PH/sFDM via the murine full-thickness skin wound model, regenerative potential of PH/sFDM was supported by epidermal thickness, significantly more neovessel formation, and enhanced mature collagen deposition. The hindlimb ischemia model also found some therapeutic improvements, as assessed by accelerated blood reperfusion and substantially diminished necrosis and fibrosis in the gastrocnemius and tibialis muscles. Together, based on sFDM holding a strong therapeutic potential, our engineered hydrogel (PH/sFDM) should be a promising candidate in tissue engineering and regenerative medicine.
Assuntos
Matriz Extracelular/química , Fibroblastos/química , Membro Posterior/lesões , Ácido Hialurônico/farmacologia , Isquemia/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Animais , Células Cultivadas , Modelos Animais de Doenças , Membro Posterior/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácido Hialurônico/química , Hidrogéis , Isquemia/etiologia , Masculino , Camundongos , Tamanho da Partícula , Poloxâmero/química , Medicina Regenerativa , Reologia , Células THP-1 , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
BACKGROUND: Extracellular matrix (ECM) has a profound effect on cell behaviors. In this study, we prepare a decellularized human nasal septal chondrocyte (NSC)-derived ECM (CHDM), as a natural (N-CHDM) or soluble form (S-CHDM), and investigate their impact on NSCs differentiation. METHODS: N-CHDM, S-CHDM were obtained from NSC. To evaluate function of NSC cultured on each substrate, gene expression using chondrogenic marker, and chondrogenic protein expression were tested. Preconditioned NSCs-loaded scaffolds were transplanted in nude mice for 3 weeks and analyzed. RESULTS: When cultivated on each substrate, NSCs exhibited similar cell spread area but showed distinct morphology on N-CHDM with significantly lower cell circularity. They were highly proliferative on N-CHDM than S-CHDM and tissue culture plastic (TCP), and showed more improved cell differentiation, as assessed via chondrogenic marker (Col2, Sox9, and Aggrecan) expression and immunofluorescence of COL II. We also investigated the effect of NSCs preconditioning on three different 2D substrates while NSCs were isolated from those substrates, subsequently transferred to 3D mesh scaffold, then cultivated them in vitro or transplanted in vivo. The number of cells in the scaffolds was similar to each other at 5 days but cell differentiation was notably better with NSCs preconditioned on N-CHDM, as assessed via real-time q-PCR, Western blot, and immunofluorescence. Moreover, when those NSCs-loaded polymer scaffolds were transplanted subcutaneously in nude mice for 3 weeks and analyzed, the NSCs preconditioned on the N-CHDM showed significantly advanced cell retention in the scaffold, more cells with a chondrocyte lacunae structure, and larger production of cartilage ECM (COL II, glycosaminoglycan). CONCLUSIONS: Taken together, a natural form of decellularized ECM, N-CHDM would present an advanced chondrogenic potential over a reformulated ECM (S-CHDM) or TCP substrate, suggesting that N-CHDM may hold more diverse signaling cues, not just limited to ECM component.
RESUMO
Air pollution exposure leads to various inflammatory diseases in the human respiratory system. Chronic rhinosinusitis is an inflammatory disease caused by viruses, bacteria, or air pollutants. However, the underlying molecular mechanisms through which air particulate matter (PM) causes inflammation and disease remain unclear. In this article, we report that the induction of exosomal microRNAs (miRNAs) from human nasal epithelial cells upon airborne PM exposure promotes proinflammatory M1 macrophage polarization via downregulated RORα expression. Exposure of human nasal epithelial cells to PM results in inflammation-related miRNA expression, and more miRNA is secreted through exosomes delivered to macrophages. Among these, miRNA-19a and miRNA-614 directly bind to the 3'-untranslated region of RORα mRNA and downregulate RORα expression, which leads to inflammation due to inflammatory cytokine upregulation and induces macrophages to a proinflammatory M1-like state. Finally, we showed enhanced expression of miRNA-19a and miRNA-614 but reduced RORα expression in a chronic rhinosinusitis patient tissue compared with the normal. Altogether, our results suggest that PM-induced exosomal miRNAs might play a crucial role in the proinflammatory mucosal microenvironment and macrophage polarization through the regulation of RORα expression.
Assuntos
Poluentes Atmosféricos/efeitos adversos , Exossomos/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Mucosa Respiratória/metabolismo , Linhagem Celular , Microambiente Celular/efeitos dos fármacos , Microambiente Celular/fisiologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Exossomos/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Macrófagos/efeitos dos fármacos , Material Particulado/efeitos adversos , Mucosa Respiratória/efeitos dos fármacos , Células THP-1RESUMO
A decellularized extracellular matrix (dECM) is an excellent biomaterial in regenerative medicine, due to its biomimetic nature in targeting tissues and organs. In this study, we prepared cell-derived ECMs (CDM) derived from four different cell sources, characterized them individually, and found that intrinsic properties of each CDM were substantially different in terms of the fibrous matrix, total protein, and biochemical factors. Based on such information, we selected two ECM candidates, the human lung fibroblast derived matrix (hFDM) and the umbilical cord-blood mesenchymal stem cell derived matrix (UMDM) for the study of ECM-macrophage interactions in vitro and in vivo. In fact, UMDM was the richer in both total protein and angiogenic-related cytokines than any other CDM. When THP-1 cell-derived macrophages (M0) were seeded onto the UMDM or the hFDM, it showed a mixed cell morphology of macrophage phenotype and the macrophages (M0) preconditioned on UMDM presented more diverse cytokine release profiles. The treatment of conditioned medium obtained from CDM-seeded macrophages showed that UMDM could yield significantly advanced wound closure in 24 h via the human dermal fibroblast scratch model. To investigate the role of ECM on macrophage polarization in vivo, we prepared an ECM hydrogel, a mixture of each CDM and Pluronic F127/hyaluronan, and applied them onto a full-thickness mouse skin wound model for 2 weeks. The therapeutic efficacy as assessed via histology and immunofluorescence staining (α-SMA and CD206) revealed that the UMDM-treated group showed more effective wound healing compared to the other groups, as proven via the thinner epidermal layer, significant recovery of skin appendage, better neovascularization, and higher recruitment of myofibroblasts and larger number of macrophages (M2) at 7 days. The difference between UMDM and hFDM was marginal. Taken together, among the CDMs, UMDM and hFDM are promising resources of ECM, showing a great potential for wound healing. Although the mechanism is not fully understood, bioactive innate factors in UMDM may contribute individually and/or collectively to advance wound healing.
Assuntos
Materiais Biocompatíveis/metabolismo , Matriz Extracelular/metabolismo , Macrófagos/citologia , Cicatrização , Animais , Linhagem Celular , Citocinas/metabolismo , Humanos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Medicina RegenerativaRESUMO
A high level of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) upregulates pro-inflammatory cytokines and inhibits the osteogenic differentiation of mesenchymal stem cells (MSCs), which are key factors in bone regeneration. Ursodeoxycholic acid (UDCA), a hydrophilic bile acid, has antioxidant and anti-inflammatory activities and also plays beneficial roles in bone regeneration by stimulating the osteogenic differentiation of MSCs while suppressing their adipogenic differentiation. Despite its remarkable capacity for bone regeneration, multiple injections of UDCA induce adverse side effects such as mechanical stress and contamination in bone defects. To fully exploit the beneficial roles of UDCA, a concept polymeric prodrug was developed based on the hypothesis that removal of overproduced H2O2 will potentiate the osteogenic functions of UDCA. In this work, we report bone regenerative nanoparticles (NPs) formulated from a polymeric prodrug of UDCA (PUDCA) with UDCA incorporated in its backbone through H2O2-responsive peroxalate linkages. The PUDCA NPs displayed potent antioxidant and anti-inflammatory activities in MSCs and induced osteogenic rather than adipogenic differentiation of the MSCs. In rat models of bone defect, the PUDCA NPs exhibited significantly better bone regeneration capacity and anti-inflammatory effects than equivalent amounts of UDCA. We anticipate that PUDCA NPs have tremendous translational potential as bone regenerative agents.
Assuntos
Células-Tronco Mesenquimais , Nanopartículas , Pró-Fármacos , Animais , Ácidos e Sais Biliares , Regeneração Óssea , Diferenciação Celular , Peróxido de Hidrogênio , Osteogênese , RatosRESUMO
Decellularized human lung fibroblast-derived matrix (hFDM) has demonstrated its excellent proangiogenic capability. In this study, we propose a self-assembled, injectable multicellular microspheres containing human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cell (MSCs), collagen hydrogel (Col), and hFDM toward therapeutic angiogenesis. Those multicellular microspheres are spontaneously formed by the mixtures of cell and hydrogel after being dropped on the parafilm for several hours. The size of microspheres can be manipulated via adjusting the initial volume of droplets and the culture period. The cells in the microspheres are highly viable. Multicellular microspheres show good capability of cell migration on 2D culture plate and also exhibit active cell sprouting in 3D environment (Col) forming capillary-like structures. We also find that multiple angiogenic-related factors are significantly upregulated with the multicellular microspheres prepared via Col and hFDM (Col/hFDM) than those prepared using Col alone or single cells (harvested from cocultured HUVECs/MSCs in monolayer). For therapeutic efficacy evaluation, three different groups of single cells, Col and Col/hFDM microspheres are injected to a hindlimb ischemic model, respectively, along with PBS injection as a control group. It is notable that Col/hFDM microspheres significantly improve the blood reperfusion and greatly attenuate the fibrosis level of the ischemic regions. In addition, Col/hFDM microspheres show higher cell engraftment level than that of the other groups. The incorporation of transplanted cells with host vasculature is detectable only with the treatment of Col/hFDM. Current results suggest that hFDM plays an important role in the multicellular microspheres for angiogenic cellular functions in vitro as well as in vivo. Taken together, our injectable multicellular microspheres (Col/hFDM) offer a very promising platform for cell delivery and tissue regenerative applications.
Assuntos
Matriz Extracelular/química , Microesferas , Neovascularização Fisiológica , Animais , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Membro Posterior/irrigação sanguínea , Membro Posterior/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Isquemia/patologia , Isquemia/terapia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Neovascularização Fisiológica/efeitos dos fármacos , Alicerces Teciduais/químicaRESUMO
Decellularized extracellular matrix (ECM)-based scaffold has been a very useful resource for effective tissue regeneration. In this study, we report a novel ECM patch that physically combines human fibroblast-derived matrix (hFDM) and poly(vinyl alcohol) (PVA) hydrogel. hFDM was obtained after decellularization of in vitro cultured human fibroblasts. We investigated the basic characteristics of hFDM alone using immunofluorescence (fibronectin, collagen type I) and angiogenesis-related factor analysis. Successful incorporation of hFDM with PVA produced an hFDM/PVA patch, which showed excellent cytocompatibility with human mesenchymal stem cells (hMSCs), as assessed via cell adhesion, viability, and proliferation. Moreover, in vitro scratch assay using human dermal fibroblasts showed a significant improvement of cell migration when treated with the paracrine factors originated from the hMSC-incorporated hFDM. To evaluate the therapeutic effect on wound healing, hMSCs were seeded on the hFDM/PVA patch and they were then transplanted into a mouse full-thickness wound model. Among four experimental groups (control, PVA, hFDM/PVA, hMSC/hFDM/PVA), we found that hMSC/hFDM/PVA patch accelerated the wound closure with time. More notably, histology and immunofluorescence demonstrated that compared to the other interventions tested, hMSC/hFDM/PVA patch could lead to significantly advanced tissue regeneration, as confirmed via nearly normal epidermis thickness, skin adnexa regeneration (hair follicle), mature collagen deposition, and neovascularization. Additionally, cell tracking of prelabeled hMSCs suggests the in vivo retention of transplanted cells in the wound region after the transplantation of hMSC/hFDM/PVA patch. Taken together, our engineered ECM patch supports a strong regenerative potential toward advanced wound healing.
Assuntos
Células-Tronco Mesenquimais , Animais , Matriz Extracelular , Fibroblastos , Humanos , Álcool de Polivinil , CicatrizaçãoRESUMO
Current cell-based therapies administered after myocardial infarction (MI) show limited efficacy due to subpar cell retention in a dynamically beating heart. In particular, cardiac patches generally provide a cursory level of cell attachment due to the lack of an adequate microenvironment. From this perspective, decellularized cell-derived ECM (CDM) is attractive in its recapitulation of a natural biophysical environment for cells. Unfortunately, its weak physical property renders it difficult to retain in its original form, limiting its full potential. Here, a novel strategy to peel CDM off from its underlying substrate is proposed. By physically stamping it onto a polyvinyl alcohol hydrogel, the resulting stretchable extracellular matrix (ECM) membrane preserves the natural microenvironment of CDM, thereby conferring a biological interface to a viscoelastic membrane. Its various mechanical and biological properties are characterized and its capacity to improve cardiomyocyte functionality is demonstrated. Finally, evidence of enhanced stem cell delivery using the stretchable ECM membrane is presented, which leads to improved cardiac remodeling in a rat MI model. A new class of material based on natural CDM is envisioned for the enhanced delivery of cells and growth factors that have a known affinity with ECM.
Assuntos
Sistema Cardiovascular/patologia , Matriz Extracelular/química , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/terapia , Animais , Apoptose , Sistema Cardiovascular/diagnóstico por imagem , Sistema Cardiovascular/fisiopatologia , Fibroblastos/citologia , Fibrose , Humanos , Macrófagos/metabolismo , Membranas , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Álcool de Polivinil/química , Ratos Sprague-Dawley , Resistência à Tração , Remodelação VentricularRESUMO
Scaffold plays a critical role in stem cell differentiation and tissue regeneration. Composite scaffolds composed of bacterial cellulose (BC) and collagen (Col) in different ratios (1:1, 3:1, 5:1) were fabricated in this study. The composite scaffolds exhibit a well-organized interconnected porous structure, significantly better physical stability than Col scaffold, and more water uptake up to 400%. They were also favorable with cell attachment and growth. After osteogenic induction of umbilical cord blood derived mesenchymal stem cells (UCB-MSCs) for 3 weeks, we found more up-regulated osteogenic markers (collagen type 1, osteocalcin, bone sialoprotein) and significantly elevated proteins and calcium deposition, particularly with BC/Col (5:1) scaffold. When PKH-26 pre-labelled MSC-loaded scaffolds were subcutaneously transplanted in a mouse model, they showed many PKH-26-labelled cells and positive signals of α-smooth muscle actin, for neovascularization in the BC/Col (5:1). The current work demonstrates that our BC/Col composites may be promising as a bone tissue-engineered scaffold.
Assuntos
Celulose/química , Colágeno/química , Gluconacetobacter xylinus/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Celulose/uso terapêutico , Colágeno/uso terapêutico , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Osteogênese/efeitos dos fármacosRESUMO
Hydrogels have been developed and applied to various biomedical applications due to their biocompatibility. However, understanding of modulation between cells to hydrogel interface is still unclear, and parameters to explain the interaction are not sophisticated enough. In this report, we studied the effect of polymer chain flexibility on cell adhesion to various hydrogel constructs of collagen and fibrin gels. Specifically, novel method of semi-flexible model-based analysis confirmed that chain flexibility mediated microstructure of the hydrogels is a critical factor for cell adhesion on their surfaces. The proposed analysis showed possibility of more accurate prediction of biocompatibility of hydrogels, and it should be considered as one of the important criteria for polymer design and selections for enhancing both biocompatibility and biofunctionality.