Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 9(5)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423146

RESUMO

Kenaf is a source of fiber and a bioenergy crop that is considered to be a third world crop. Recently, a new kenaf cultivar, "Jangdae," was developed by gamma irradiation. It exhibited distinguishable characteristics such as higher biomass, higher seed yield, and earlier flowering than the wild type. We sequenced and analyzed the transcriptome of apical leaf and stem using Pacific Biosciences single-molecule long-read isoform sequencing platform. De novo assembly yielded 26,822 full-length transcripts with a total length of 59 Mbp. Sequence similarity against protein sequence allowed the functional annotation of 11,370 unigenes. Among them, 10,100 unigenes were assigned gene ontology terms, the majority of which were associated with the metabolic and cellular process. The Kyoto encyclopedia of genes and genomes (KEGG) analysis mapped 8875 of the annotated unigenes to 149 metabolic pathways. We also identified the majority of putative genes involved in cellulose and lignin-biosynthesis. We further evaluated the expression pattern in eight gene families involved in lignin-biosynthesis at different growth stages. In this study, appropriate biotechnological approaches using the information obtained for these putative genes will help to modify the desirable content traits in mutants. The transcriptome data can be used as a reference dataset and provide a resource for molecular genetic studies in kenaf.

2.
BMC Biotechnol ; 17(1): 67, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28810845

RESUMO

BACKGROUND: Genetically modified crops (GM crops) have been developed to improve the agricultural traits of modern crop cultivars. Safety assessments of GM crops are of paramount importance in research at developmental stages and before releasing transgenic plants into the marketplace. Sequencing technology is developing rapidly, with higher output and labor efficiencies, and will eventually replace existing methods for the molecular characterization of genetically modified organisms. METHODS: To detect the transgenic insertion locations in the three GM rice gnomes, Illumina sequencing reads are mapped and classified to the rice genome and plasmid sequence. The both mapped reads are classified to characterize the junction site between plant and transgene sequence by sequence alignment. RESULTS: Herein, we present a next generation sequencing (NGS)-based molecular characterization method, using transgenic rice plants SNU-Bt9-5, SNU-Bt9-30, and SNU-Bt9-109. Specifically, using bioinformatics tools, we detected the precise insertion locations and copy numbers of transfer DNA, genetic rearrangements, and the absence of backbone sequences, which were equivalent to results obtained from Southern blot analyses. CONCLUSION: NGS methods have been suggested as an effective means of characterizing and detecting transgenic insertion locations in genomes. Our results demonstrate the use of a combination of NGS technology and bioinformatics approaches that offers cost- and time-effective methods for assessing the safety of transgenic plants.


Assuntos
Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Oryza/genética , Plantas Geneticamente Modificadas/genética , Transgenes , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Produtos Agrícolas/genética , DNA Bacteriano , Endotoxinas/genética , Dosagem de Genes , Genoma de Planta , Proteínas Hemolisinas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA