Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 32: 914-922, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37346976

RESUMO

Precise genome editing in human pluripotent stem cells (hPSCs) has potential applications in isogenic disease modeling and ex vivo stem cell therapy, necessitating diverse genome editing tools. However, unlike differentiated somatic cells, hPSCs have unique cellular properties that maintain genome integrity, which largely determine the overall efficiency of an editing tool. Considering the high demand for prime editors (PEs), it is imperative to characterize the key molecular determinants of PE outcomes in hPSCs. Through homozygous knockout (KO) of MMR pathway key proteins MSH2, MSH3, and MSH6, we reveal that MutSα and MutSß determine PE efficiency in an editing size-dependent manner. Notably, MSH2 perturbation disrupted both MutSα and MutSß complexes, dramatically escalating PE efficiency from base mispair to 10 bases, up to 50 folds. Similarly, impaired MutSα by MSH6 KO improved editing efficiency from single to three base pairs, while defective MutSß by MSH3 KO heightened efficiency from three to 10 base pairs. Thus, the size-dependent effect of MutSα and MutSß on prime editing implies that MMR is a vital PE efficiency determinant in hPSCs and highlights the distinct roles of MutSα and MutSß in its outcome.

2.
Stem Cell Res Ther ; 14(1): 164, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340491

RESUMO

Owing to the advances in genome editing technologies, research on human pluripotent stem cells (hPSCs) have recently undergone breakthroughs that enable precise alteration of desired nucleotide bases in hPSCs for the creation of isogenic disease models or for autologous ex vivo cell therapy. As pathogenic variants largely consist of point mutations, precise substitution of mutated bases in hPSCs allows researchers study disease mechanisms with "disease-in-a-dish" and provide functionally repaired cells to patients for cell therapy. To this end, in addition to utilizing the conventional homologous directed repair system in the knock-in strategy based on endonuclease activity of Cas9 (i.e., 'scissors' like gene editing), diverse toolkits for editing the desirable bases (i.e., 'pencils' like gene editing) that avoid the accidental insertion and deletion (indel) mutations as well as large harmful deletions have been developed. In this review, we summarize the recent progress in genome editing methodologies and employment of hPSCs for future translational applications.


Assuntos
Edição de Genes , Células-Tronco Pluripotentes , Humanos , Edição de Genes/métodos , Mutação
3.
Macromol Biosci ; 21(11): e2100234, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34382323

RESUMO

Cryogels are gel networks or scaffolds with a large porous structure; they can be tailored for injectability and for possessing a shape-memory ability. Herein, a growth factor-releasing cryogel microparticle (CMP) system is fabricated, and the therapeutic efficacy of recombinant human vascular endothelial growth factor (rhVEGF)-loaded CMP (V-CMP) for neovascularization is investigated. To prepare the cryogels, both methacrylated chitosan (Chi-MA) and methacrylated chondroitin sulfate (CS-MA) are used, and crosslinking using a radical crosslinking reaction is established. The physical, mechanical, and biological properties of the cryogels are analyzed by varying the amount of CS-MA used. The cryogels are then pulverized, and microsized CMPs are fabricated. CMPs dispersed in saline demonstrate a shear-thinning property, and can thus be extruded through a 23G needle. Additionally, V-CMP exhibit a sustained release profile of rhVEGF and enhance the in vitro proliferation of endothelial cells. Finally, neovascularization and effective tissue necrosis prevention are observed when V-CMPs are injected into a hindlimb ischemia mouse model. Thus, the injectable V-CMP system developed herein demonstrates a high potential utility in various tissue regeneration applications based on cell or growth factor delivery.


Assuntos
Criogéis/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Animais , Anti-Infecciosos/administração & dosagem , Biopolímeros , Membro Posterior/irrigação sanguínea , Humanos , Injeções Intramusculares , Isquemia/tratamento farmacológico , Camundongos , Proteínas Recombinantes/administração & dosagem
4.
Front Bioeng Biotechnol ; 9: 681501, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222219

RESUMO

Recently, the stem cell-derived secretome, which is the set of proteins expressed by stem cells and secreted into the extracellular space, has been demonstrated as a critical contributor for tissue repair. In this study, we have produced two sets of high concentration secretomes from adipose-derived mesenchymal stem cells (ADSCs) that contain bovine serum or free of exogenous molecules. Through proteomic analysis, we elucidated that proteins related to extracellular matrix organization and growth factor-related proteins are highly secreted by ADSCs. Additionally, the application of ADSC secretome to full skin defect showed accelerated wound closure, enhanced angiogenic response, and complete regeneration of epithelial gaps. Furthermore, the ADSC secretome was capable of reducing scar formation. Finally, we show high-dose injection of ADSC secretome via intraperitoneal or transdermal delivery demonstrated no detectable pathological conditions in various tissues/organs, which supports the notion that ADSC secretome can be safely utilized for tissue repair and regeneration.

5.
Adv Healthc Mater ; 10(13): e2100070, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33882194

RESUMO

Regeneration of large bones remains a challenge in surgery. Recent developmental engineering efforts aim to recapitulate endochondral ossification (EO), a critical step in bone formation. However, this process entails the condensation of mesenchymal stem cells (MSCs) into cartilaginous templates, which requires long-term cultures and is challenging to scale up. Here, a biomimetic scaffold is developed that allows rapid and self-sustained EO without initial hypertrophic chondrogenesis. The design comprises a porous chondroitin sulfate cryogel decorated with whitlockite calcium phosphate nanoparticles, and a soft hydrogel occupying the porous space. This composite scaffold enables human endothelial colony-forming cells (ECFCs) and MSCs to rapidly assemble into osteovascular niches in immunodeficient mice. These niches contain ECFC-lined blood vessels and perivascular MSCs that differentiate into RUNX2+ OSX+ pre-osteoblasts after one week in vivo. Subsequently, multiple ossification centers are formed, leading to de novo bone tissue formation by eight weeks, including mature human OCN+ OPN+ osteoblasts, collagen-rich mineralized extracellular matrix, hydroxyapatite, osteoclast activity, and gradual mechanical competence. The early establishment of blood vessels is essential, and grafts that do not contain ECFCs fail to produce osteovascular niches and ossification centers. The findings suggest a novel bioengineering approach to recapitulate EO in the context of human bone regeneration.


Assuntos
Osteogênese , Engenharia Tecidual , Animais , Biomimética , Condrogênese , Camundongos , Alicerces Teciduais
6.
Adv Biol (Weinh) ; 5(1): e2000176, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33724733

RESUMO

The instability of recombinant basic fibroblast growth factor (bFGF) is a major disadvantage for its therapeutic use and means frequent applications to cells or tissues are required for sustained effects. Originating from silkworm hemolymph, 30Kc19α is a cell-penetrating protein that also has protein stabilization properties. Herein, it is investigated whether fusing 30Kc19α to bFGF can enhance the stability and skin penetration properties of bFGF, which may consequently increase its therapeutic efficacy. The fusion of 30Kc19α to bFGF protein increases protein stability, as confirmed by ELISA. 30Kc19α-bFGF also retains the biological activity of bFGF as it facilitates the migration and proliferation of fibroblasts and angiogenesis of endothelial cells. It is discovered that 30Kc19α can improve the transdermal delivery of a small molecular fluorophore through the skin of hairless mice. Importantly, it increases the accumulation of bFGF and further facilitates its translocation into the skin through follicular routes. Finally, when applied to a skin wound model in vivo, 30Kc19α-bFGF penetrates the dermis layer effectively, which promotes cell proliferation, tissue granulation, angiogenesis, and tissue remodeling. Consequently, the findings suggest that 30Kc19α improves the therapeutic functionalities of bFGF, and would be useful as a protein stabilizer and/or a delivery vehicle in therapeutic applications.


Assuntos
Células Endoteliais , Fator 2 de Crescimento de Fibroblastos , Animais , Camundongos , Proteínas Recombinantes , Pele , Cicatrização
7.
ACS Nano ; 14(4): 4523-4535, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32191436

RESUMO

We herein developed an iontophoretic transdermal drug delivery system for the effective delivery of electrically mobile drug nanocarriers (DNs). Our system consists of a portable and disposable reverse electrodialysis (RED) battery that generates electric power for iontophoresis through the ionic exchange. In addition, in order to provide a drug reservoir to the RED-driven iontophoretic system, an electroconductive hydrogel composed of polypyrrole-incorporated poly(vinyl alcohol) (PYP) was used. The PYP hydrogel facilitated electron transfer from the RED battery and accelerated the mobility of electrically mobile DNs released from the PYP hydrogel. In this study, we showed that fluconazole- or rosiglitazone-loaded DNs could be functionalized with charge-inducing agents, and DNs with charge modification resulted in facilitated transdermal transport via repulsive RED-driven iontophoresis. In addition, topical application and RED-driven iontophoresis of rosiglitazone-loaded DNs resulted in an effective antiobese condition displaying decreased bodyweight, reduced glucose level, and increased conversion of white adipose tissues to brown adipose tissues in vivo. Consequently, we highlight that this transdermal drug delivery platform would be extensively utilized for delivering diverse therapeutic agents in a noninvasive way.


Assuntos
Iontoforese , Polímeros , Sistemas de Liberação de Medicamentos , Hidrogéis/metabolismo , Polímeros/metabolismo , Pirróis , Pele/metabolismo , Absorção Cutânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA