Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Res ; 33(5): 729-740, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37127330

RESUMO

Understanding the genetic causes of trait variation is a primary goal of genetic research. One way that individuals can vary genetically is through variable pangenomic genes: genes that are only present in some individuals in a population. The presence or absence of entire genes could have large effects on trait variation. However, variable pangenomic genes can be missed in standard genotyping workflows, owing to reliance on aligning short-read sequencing to reference genomes. A popular method for studying the genetic basis of trait variation is linkage mapping, which identifies quantitative trait loci (QTLs), regions of the genome that harbor causative genetic variants. Large-scale linkage mapping in the budding yeast Saccharomyces cerevisiae has found thousands of QTLs affecting myriad yeast phenotypes. To enable the resolution of QTLs caused by variable pangenomic genes, we used long-read sequencing to generate highly complete de novo genome assemblies of 16 diverse yeast isolates. With these assemblies, we resolved QTLs for growth on maltose, sucrose, raffinose, and oxidative stress to specific genes that are absent from the reference genome but present in the broader yeast population at appreciable frequency. Copies of genes also duplicate onto chromosomes where they are absent in the reference genome, and we found that these copies generate additional QTLs whose resolution requires pangenome characterization. Our findings show the need for highly complete genome assemblies to identify the genetic basis of trait variation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Fenótipo , Proteínas de Saccharomyces cerevisiae/genética
2.
J Christ Nurs ; 38(3): 187-193, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34085657

RESUMO

ABSTRACT: Minority populations have lower rates of advance care planning (ACP) than the general population. Faith community nurses (FCNs) can facilitate ACP training to improve end-of-life care outcomes for patients and caregivers. A nurse-led ACP training delivered to a primarily Korean American faith community increased the number of families who discussed end-of-life care values and wishes. Considerations for ACP outreach to Korean Americans and implications for FCNs are discussed.


Assuntos
Planejamento Antecipado de Cuidados , Enfermeiras e Enfermeiros , Assistência Terminal , Asiático , Comunicação , Humanos
3.
Nat Med ; 27(8): 1401-1409, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34155414

RESUMO

Candida auris is a fungal pathogen of high concern due to its ability to cause healthcare-associated infections and outbreaks, its resistance to antimicrobials and disinfectants and its persistence on human skin and in the inanimate environment. To inform surveillance and future mitigation strategies, we defined the extent of skin colonization and explored the microbiome associated with C. auris colonization. We collected swab specimens and clinical data at three times points between January and April 2019 from 57 residents (up to ten body sites each) of a ventilator-capable skilled nursing facility with endemic C. auris and routine chlorhexidine gluconate (CHG) bathing. Integrating microbial-genomic and epidemiologic data revealed occult C. auris colonization of multiple body sites not targeted commonly for screening. High concentrations of CHG were associated with suppression of C. auris growth but not with deleterious perturbation of commensal microbes. Modeling human mycobiome dynamics provided insight into underlying alterations to the skin fungal community as a possible modifiable risk factor for acquisition and persistence of C. auris. Failure to detect the extensive, disparate niches of C. auris colonization may reduce the effectiveness of infection-prevention measures that target colonized residents, highlighting the importance of universal strategies to reduce C. auris transmission.


Assuntos
Candida/genética , Candidíase/epidemiologia , Dermatomicoses/epidemiologia , Pele/microbiologia , Dermatomicoses/microbiologia , Genômica , Humanos , Casas de Saúde
4.
Epilepsia Open ; 6(1): 102-111, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33681653

RESUMO

Objective: Our goal was to perform detailed clinical and genomic analysis of a large multigenerational Chinese family with 21 individuals showing symptoms of Familial Cortical Myoclonic Tremor with Epilepsy (FCMTE) that we have followed for over 20 years. Methods: Patients were subjected to clinical evaluation, routine EEG, and structural magnetic resonance imaging. Whole exome sequencing, repeat-primed PCR, long-range PCR, and PacBio sequencing were performed to characterize the disease-causing mutation in this family. Results: All evaluated patients manifested adult-onset seizures and presented with progressive myoclonic postural tremors starting after the third or fourth decade of life. Seizures typically diminished markedly in frequency with implementation of antiseizure medications but did not completely cease. The electroencephalogram of affected individuals showed generalized or multifocal spikes and slow wave complexes. An expansion of TTTTA motifs with addition of TTTCA motifs in intron 4 of SAMD12 was identified to segregate with the disease phenotype in this family. Furthermore, we found that the mutant allele is unstable and can undergo both contraction and expansion by changes in the number of repeat motifs each time it is passed to the next generation. The size of mutant allele varied from 5 to 5.5 kb with 549-603 copies of TTTTA and 287-343 copies of TTTCA repeat motifs in this family. Significance: Our study provides a detailed description of clinical progression of FCMTE symptoms and its management with antiseizure medications. Our method of repeat analysis by PacBio sequencing of long-range PCR products does not require high-quality DNA and hence can be easily applied to other families to elucidate any correlation between the repeat size and phenotypic variables, such as, age of onset, and severity of symptoms.


Assuntos
Expansão das Repetições de DNA , Epilepsias Mioclônicas/genética , Genômica , Proteínas do Tecido Nervoso/genética , Linhagem , Tremor/genética , Adulto , Anticonvulsivantes/uso terapêutico , Carbamazepina/uso terapêutico , China , Eletroencefalografia , Epilepsias Mioclônicas/tratamento farmacológico , Síndromes Epilépticas , Feminino , Humanos , Íntrons , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fenótipo , Sequenciamento do Exoma
5.
mBio ; 10(5)2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594809

RESUMO

Antibiotics, which are used both to prevent and to treat infections, are a mainstay therapy for lifesaving procedures such as transplantation. For this reason, and many others, increased antibiotic resistance among human-associated pathogens, such as the carbapenem-resistant Enterobacteriaceae species, is of grave concern. In this study, we report on a hematopoietic stem cell transplant recipient in whom cultures detected the emergence of carbapenem resistance and spread across five strains of bacteria that persisted for over a year. Carbapenem resistance in Citrobacter freundii, Enterobacter cloacae, Klebsiella aerogenes, and Klebsiella pneumoniae was linked to a pair of plasmids, each carrying the Klebsiella pneumoniae carbapenemase gene (blaKPC). Surveillance cultures identified a carbapenem-susceptible strain of Citrobacter freundii that may have become resistant through horizontal gene transfer of these plasmids. Selection of a multidrug-resistant Klebsiella pneumoniae strain was also detected following combination antibiotic therapy. Here we report a plasmid carrying the blaKPC gene with broad host range that poses the additional threat of spreading to endogenous members of the human gut microbiome.IMPORTANCE Antibiotic-resistant bacteria are a serious threat to medically fragile patient populations. The spread of antibiotic resistance through plasmid-mediated mechanisms is of grave concern as it can lead to the conversion of endogenous patient-associated strains to difficult-to-treat pathogens.


Assuntos
Antibacterianos/administração & dosagem , Farmacorresistência Bacteriana Múltipla , Transferência Genética Horizontal , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Plasmídeos/análise , Antibioticoprofilaxia/métodos , Transplante de Células-Tronco Hematopoéticas , Humanos , Klebsiella pneumoniae/isolamento & purificação , Seleção Genética , Transplantados
6.
N Engl J Med ; 379(26): 2529-2539, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30586509

RESUMO

BACKGROUND: Plumbing systems are an infrequent but known reservoir for opportunistic microbial pathogens that can infect hospitalized patients. In 2016, a cluster of clinical sphingomonas infections prompted an investigation. METHODS: We performed whole-genome DNA sequencing on clinical isolates of multidrug-resistant Sphingomonas koreensis identified from 2006 through 2016 at the National Institutes of Health (NIH) Clinical Center. We cultured S. koreensis from the sinks in patient rooms and performed both whole-genome and shotgun metagenomic sequencing to identify a reservoir within the infrastructure of the hospital. These isolates were compared with clinical and environmental S. koreensis isolates obtained from other institutions. RESULTS: The investigation showed that two isolates of S. koreensis obtained from the six patients identified in the 2016 cluster were unrelated, but four isolates shared more than 99.92% genetic similarity and were resistant to multiple antibiotic agents. Retrospective analysis of banked clinical isolates of sphingomonas from the NIH Clinical Center revealed the intermittent recovery of a clonal strain over the past decade. Unique single-nucleotide variants identified in strains of S. koreensis elucidated the existence of a reservoir in the hospital plumbing. Clinical S. koreensis isolates from other facilities were genetically distinct from the NIH isolates. Hospital remediation strategies were guided by results of microbiologic culturing and fine-scale genomic analyses. CONCLUSIONS: This genomic and epidemiologic investigation suggests that S. koreensis is an opportunistic human pathogen that both persisted in the NIH Clinical Center infrastructure across time and space and caused health care-associated infections. (Funded by the NIH Intramural Research Programs.).


Assuntos
Infecção Hospitalar/microbiologia , Reservatórios de Doenças/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Engenharia Sanitária , Sphingomonas/genética , Antibacterianos/farmacologia , Hospitais Federais , Humanos , Metagenômica , Testes de Sensibilidade Microbiana , National Institutes of Health (U.S.) , Estudos Retrospectivos , Sphingomonas/efeitos dos fármacos , Sphingomonas/isolamento & purificação , Estados Unidos , Abastecimento de Água , Sequenciamento Completo do Genoma
7.
mBio ; 9(1)2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29437920

RESUMO

The hospital environment is a potential reservoir of bacteria with plasmids conferring carbapenem resistance. Our Hospital Epidemiology Service routinely performs extensive sampling of high-touch surfaces, sinks, and other locations in the hospital. Over a 2-year period, additional sampling was conducted at a broader range of locations, including housekeeping closets, wastewater from hospital internal pipes, and external manholes. We compared these data with previously collected information from 5 years of patient clinical and surveillance isolates. Whole-genome sequencing and analysis of 108 isolates provided comprehensive characterization of blaKPC/blaNDM-positive isolates, enabling an in-depth genetic comparison. Strikingly, despite a very low prevalence of patient infections with blaKPC-positive organisms, all samples from the intensive care unit pipe wastewater and external manholes contained carbapenemase-producing organisms (CPOs), suggesting a vast, resilient reservoir. We observed a diverse set of species and plasmids, and we noted species and susceptibility profile differences between environmental and patient populations of CPOs. However, there were plasmid backbones common to both populations, highlighting a potential environmental reservoir of mobile elements that may contribute to the spread of resistance genes. Clear associations between patient and environmental isolates were uncommon based on sequence analysis and epidemiology, suggesting reasonable infection control compliance at our institution. Nonetheless, a probable nosocomial transmission of Leclercia sp. from the housekeeping environment to a patient was detected by this extensive surveillance. These data and analyses further our understanding of CPOs in the hospital environment and are broadly relevant to the design of infection control strategies in many infrastructure settings.IMPORTANCE Carbapenemase-producing organisms (CPOs) are a global concern because of the morbidity and mortality associated with these resistant Gram-negative bacteria. Horizontal plasmid transfer spreads the resistance mechanism to new bacteria, and understanding the plasmid ecology of the hospital environment can assist in the design of control strategies to prevent nosocomial infections. A 5-year genomic and epidemiological survey was undertaken to study the CPOs in the patient-accessible environment, as well as in the plumbing system removed from the patient. This comprehensive survey revealed a vast, unappreciated reservoir of CPOs in wastewater, which was in contrast to the low positivity rate in both the patient population and the patient-accessible environment. While there were few patient-environmental isolate associations, there were plasmid backbones common to both populations. These results are relevant to all hospitals for which CPO colonization may not yet be defined through extensive surveillance.


Assuntos
Proteínas de Bactérias/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Plasmídeos/análise , Engenharia Sanitária , Microbiologia da Água , beta-Lactamases/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Hospitais , Humanos , Metagenômica , Prevalência , Sequenciamento Completo do Genoma
8.
Mol Genet Genomic Med ; 6(1): 77-91, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29193904

RESUMO

BACKGROUND: Fanconi anemia (FA) is a rare disorder characterized by congenital malformations, progressive bone marrow failure, and predisposition to cancer. Patients harboring X-linked FANCB pathogenic variants usually present with severe congenital malformations resembling VACTERL syndrome with hydrocephalus. METHODS: We employed the diepoxybutane (DEB) test for FA diagnosis, arrayCGH for detection of duplication, targeted capture and next-gen sequencing for defining the duplication breakpoint, PacBio sequencing of full-length FANCB aberrant transcript, FANCD2 ubiquitination and foci formation assays for the evaluation of FANCB protein function by viral transduction of FANCB-null cells with lentiviral FANCB WT and mutant expression constructs, and droplet digital PCR for quantitation of the duplication in the genomic DNA and cDNA. RESULTS: We describe here an FA-B patient with a mild phenotype. The DEB diagnostic test for FA revealed somatic mosaicism. We identified a 9154 bp intragenic duplication in FANCB, covering the first coding exon 3 and the flanking regions. A four bp homology (GTAG) present at both ends of the breakpoint is consistent with microhomology-mediated duplication mechanism. The duplicated allele gives rise to an aberrant transcript containing exon 3 duplication, predicted to introduce a stop codon in FANCB protein (p.A319*). Duplication levels in the peripheral blood DNA declined from 93% to 7.9% in the span of eleven years. Moreover, the patient fibroblasts have shown 8% of wild-type (WT) allele and his carrier mother showed higher than expected levels of WT allele (79% vs. 50%) in peripheral blood, suggesting that the duplication was highly unstable. CONCLUSION: Unlike sequence point variants, intragenic duplications are difficult to precisely define, accurately quantify, and may be very unstable, challenging the proper diagnosis. The reversion of genomic duplication to the WT allele results in somatic mosaicism and may explain the relatively milder phenotype displayed by the FA-B patient described here.


Assuntos
Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Anemia de Fanconi/genética , Adolescente , Alelos , Sequência de Bases/genética , Células Sanguíneas/metabolismo , Éxons/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Fibroblastos , Duplicação Gênica/genética , Genes Ligados ao Cromossomo X/genética , Genótipo , Humanos , Masculino , Mosaicismo , Fenótipo
9.
PLoS One ; 11(9): e0163590, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27684375

RESUMO

Alternative isoform regulation (AIR) vastly increases transcriptome diversity and plays an important role in numerous biological processes and pathologies. However, the detection and analysis of isoform-level differential regulation is difficult, particularly in the face of complex and incompletely-annotated transcriptomes. Here we have used Illumina short-read/high-throughput RNA-Seq to identify 55 genes that exhibit neurally-regulated AIR in the pineal gland, and then used two other complementary experimental platforms to further study and characterize the Ttc8 gene, which is involved in Bardet-Biedl syndrome and non-syndromic retinitis pigmentosa. Use of the JunctionSeq analysis tool led to the detection of several novel exons and splice junctions in this gene, including two novel alternative transcription start sites which were found to display disproportionately strong neurally-regulated differential expression in several independent experiments. These high-throughput sequencing results were validated and augmented via targeted qPCR and long-read Pacific Biosciences SMRT sequencing. We confirmed the existence of numerous novel splice junctions and the selective upregulation of the two novel start sites. In addition, we identified more than 20 novel isoforms of the Ttc8 gene that are co-expressed in this tissue. By using information from multiple independent platforms we not only greatly reduce the risk of errors, biases, and artifacts influencing our results, we also are able to characterize the regulation and splicing of the Ttc8 gene more deeply and more precisely than would be possible via any single platform. The hybrid method outlined here represents a powerful strategy in the study of the transcriptome.

10.
mBio ; 7(3)2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27353756

RESUMO

UNLABELLED: Carbapenem-resistant Klebsiella pneumoniae strains are formidable hospital pathogens that pose a serious threat to patients around the globe due to a rising incidence in health care facilities, high mortality rates associated with infection, and potential to spread antibiotic resistance to other bacterial species, such as Escherichia coli Over 6 months in 2011, 17 patients at the National Institutes of Health (NIH) Clinical Center became colonized with a highly virulent, transmissible carbapenem-resistant strain of K. pneumoniae Our real-time genomic sequencing tracked patient-to-patient routes of transmission and informed epidemiologists' actions to monitor and control this outbreak. Two of these patients remained colonized with carbapenemase-producing organisms for at least 2 to 4 years, providing the opportunity to undertake a focused genomic study of long-term colonization with antibiotic-resistant bacteria. Whole-genome sequencing studies shed light on the underlying complex microbial colonization, including mixed or evolving bacterial populations and gain or loss of plasmids. Isolates from NIH patient 15 showed complex plasmid rearrangements, leaving the chromosome and the blaKPC-carrying plasmid intact but rearranging the two other plasmids of this outbreak strain. NIH patient 16 has shown continuous colonization with blaKPC-positive organisms across multiple time points spanning 2011 to 2015. Genomic studies defined a complex pattern of succession and plasmid transmission across two different K. pneumoniae sequence types and an E. coli isolate. These findings demonstrate the utility of genomic methods for understanding strain succession, genome plasticity, and long-term carriage of antibiotic-resistant organisms. IMPORTANCE: In 2011, the NIH Clinical Center had a nosocomial outbreak involving 19 patients who became colonized or infected with blaKPC-positive Klebsiella pneumoniae Patients who have intestinal colonization with blaKPC-positive K. pneumoniae are at risk for developing infections that are difficult or nearly impossible to treat with existing antibiotic options. Two of those patients remained colonized with blaKPC-positive Klebsiella pneumoniae for over a year, leading to the initiation of a detailed genomic analysis exploring mixed colonization, plasmid recombination, and plasmid diversification. Whole-genome sequence analysis identified a variety of changes, both subtle and large, in the blaKPC-positive organisms. Long-term colonization of patients with blaKPC-positive Klebsiella pneumoniae creates new opportunities for horizontal gene transfer of plasmids encoding antibiotic resistance genes and poses complications for the delivery of health care.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/crescimento & desenvolvimento , Klebsiella pneumoniae/genética , Plasmídeos , beta-Lactamases/genética , Proteínas de Bactérias/biossíntese , Infecção Hospitalar , DNA Bacteriano/genética , Surtos de Doenças , Eletroforese em Gel de Campo Pulsado , Escherichia coli , Feminino , Transferência Genética Horizontal , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Infecções por Klebsiella/transmissão , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/isolamento & purificação , Masculino , Fatores de Tempo , beta-Lactamases/biossíntese
11.
Cell ; 165(4): 854-66, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27153496

RESUMO

Biogeography and individuality shape the structural and functional composition of the human skin microbiome. To explore these factors' contribution to skin microbial community stability, we generated metagenomic sequence data from longitudinal samples collected over months and years. Analyzing these samples using a multi-kingdom, reference-based approach, we found that despite the skin's exposure to the external environment, its bacterial, fungal, and viral communities were largely stable over time. Site, individuality, and phylogeny were all determinants of stability. Foot sites exhibited the most variability; individuals differed in stability; and transience was a particular characteristic of eukaryotic viruses, which showed little site-specificity in colonization. Strain and single-nucleotide variant-level analysis showed that individuals maintain, rather than reacquire, prevalent microbes from the environment. Longitudinal stability of skin microbial communities generates hypotheses about colonization resistance and empowers clinical studies exploring alterations observed in disease states.


Assuntos
Bactérias/classificação , Fungos/classificação , Microbiota , Pele/microbiologia , Vírus/classificação , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Vírus de DNA/isolamento & purificação , Fungos/isolamento & purificação , Fungos/fisiologia , Homeostase , Humanos , Propionibacterium acnes/isolamento & purificação , Fenômenos Fisiológicos da Pele , Simbiose , Fenômenos Fisiológicos Virais , Vírus/isolamento & purificação
12.
Sci Transl Med ; 6(254): 254ra126, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25232178

RESUMO

Public health officials have raised concerns that plasmid transfer between Enterobacteriaceae species may spread resistance to carbapenems, an antibiotic class of last resort, thereby rendering common health care-associated infections nearly impossible to treat. To determine the diversity of carbapenemase-encoding plasmids and assess their mobility among bacterial species, we performed comprehensive surveillance and genomic sequencing of carbapenem-resistant Enterobacteriaceae in the National Institutes of Health (NIH) Clinical Center patient population and hospital environment. We isolated a repertoire of carbapenemase-encoding Enterobacteriaceae, including multiple strains of Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli, Enterobacter cloacae, Citrobacter freundii, and Pantoea species. Long-read genome sequencing with full end-to-end assembly revealed that these organisms carry the carbapenem resistance genes on a wide array of plasmids. K. pneumoniae and E. cloacae isolated simultaneously from a single patient harbored two different carbapenemase-encoding plasmids, indicating that plasmid transfer between organisms was unlikely within this patient. We did, however, find evidence of horizontal transfer of carbapenemase-encoding plasmids between K. pneumoniae, E. cloacae, and C. freundii in the hospital environment. Our data, including full plasmid identification, challenge assumptions about horizontal gene transfer events within patients and identify possible connections between patients and the hospital environment. In addition, we identified a new carbapenemase-encoding plasmid of potentially high clinical impact carried by K. pneumoniae, E. coli, E. cloacae, and Pantoea species, in unrelated patients and in the hospital environment.


Assuntos
Proteínas de Bactérias/biossíntese , Infecção Hospitalar , Enterobacteriaceae/enzimologia , Plasmídeos , beta-Lactamases/biossíntese , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Hospitais Públicos , Humanos , National Institutes of Health (U.S.) , Vigilância da População , Reação em Cadeia da Polimerase em Tempo Real , Estados Unidos
13.
Genome Res ; 23(12): 2103-14, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24170601

RESUMO

While landmark studies have shown that microbiota activate and educate host immunity, how immune systems shape microbiomes and contribute to disease is incompletely characterized. Primary immunodeficiency (PID) patients suffer recurrent microbial infections, providing a unique opportunity to address this issue. To investigate the potential influence of host immunity on the skin microbiome, we examined skin microbiomes in patients with rare monogenic PIDs: hyper-IgE (STAT3-deficient), Wiskott-Aldrich, and dedicator of cytokinesis 8 syndromes. While specific immunologic defects differ, a shared hallmark is atopic dermatitis (AD)-like eczema. We compared bacterial and fungal skin microbiomes (41 PID, 13 AD, 49 healthy controls) at four clinically relevant sites representing the major skin microenvironments. PID skin displayed increased ecological permissiveness with altered population structures, decreased site specificity and temporal stability, and colonization with microbial species not observed in controls, including Clostridium species and Serratia marcescens. Elevated fungal diversity and increased representation of opportunistic fungi (Candida, Aspergillus) supported increased PID skin permissiveness, suggesting that skin may serve as a reservoir for the recurrent fungal infections observed in these patients. The overarching theme of increased ecological permissiveness in PID skin was counterbalanced by the maintenance of a phylum barrier in which colonization remained restricted to typical human-associated phyla. Clinical parameters, including markers of disease severity, were positively correlated with prevalence of Staphylococcus, Corynebacterium, and other less abundant taxa. This study examines differences in microbial colonization and community stability in PID skin and informs our understanding of host-microbiome interactions, suggesting a bidirectional dialogue between skin commensals and the host organism.


Assuntos
Bactérias/genética , Dermatite Atópica/microbiologia , Fungos/genética , Síndromes de Imunodeficiência/microbiologia , Microbiota/genética , Pele/microbiologia , Adolescente , Adulto , Bactérias/classificação , Bactérias/patogenicidade , Criança , Pré-Escolar , Corynebacterium/genética , Corynebacterium/imunologia , Dermatite Atópica/imunologia , Feminino , Fungos/classificação , Fungos/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/patologia , Masculino , Microbiota/imunologia , RNA Ribossômico 16S/genética , Pele/imunologia , Staphylococcus/genética , Staphylococcus/imunologia , Adulto Jovem
14.
Nature ; 498(7454): 367-70, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23698366

RESUMO

Traditional culture-based methods have incompletely defined the microbial landscape of common recalcitrant human fungal skin diseases, including athlete's foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms and provides a home for diverse commensal microbiota. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also have major roles in microbial community stability, human health and disease. Genomic methodologies to identify fungal species and communities have been limited compared with those that are available for bacteria. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes. Here we sequenced and analysed fungal communities of 14 skin sites in 10 healthy adults. Eleven core-body and arm sites were dominated by fungi of the genus Malassezia, with only species-level classifications revealing fungal-community composition differences between sites. By contrast, three foot sites--plantar heel, toenail and toe web--showed high fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that physiologic attributes and topography of skin differentially shape these two microbial communities. These results provide a framework for future investigation of the contribution of interactions between pathogenic and commensal fungal and bacterial communities to the maintainenace of human health and to disease pathogenesis.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Fungos/isolamento & purificação , Pele/microbiologia , Adulto , Bactérias/classificação , Bactérias/genética , Bases de Dados Genéticas , District of Columbia , Feminino , Fungos/classificação , Fungos/genética , Saúde , Homeostase , Humanos , Malassezia/classificação , Malassezia/genética , Malassezia/isolamento & purificação , Masculino , Dados de Sequência Molecular , Pele/anatomia & histologia , Adulto Jovem
15.
BMC Biol ; 10: 107, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23259493

RESUMO

BACKGROUND: Calcium-activated photoproteins are luciferase variants found in photocyte cells of bioluminescent jellyfish (Phylum Cnidaria) and comb jellies (Phylum Ctenophora). The complete genomic sequence from the ctenophore Mnemiopsis leidyi, a representative of the earliest branch of animals that emit light, provided an opportunity to examine the genome of an organism that uses this class of luciferase for bioluminescence and to look for genes involved in light reception. To determine when photoprotein genes first arose, we examined the genomic sequence from other early-branching taxa. We combined our genomic survey with gene trees, developmental expression patterns, and functional protein assays of photoproteins and opsins to provide a comprehensive view of light production and light reception in Mnemiopsis. RESULTS: The Mnemiopsis genome has 10 full-length photoprotein genes situated within two genomic clusters with high sequence conservation that are maintained due to strong purifying selection and concerted evolution. Photoprotein-like genes were also identified in the genomes of the non-luminescent sponge Amphimedon queenslandica and the non-luminescent cnidarian Nematostella vectensis, and phylogenomic analysis demonstrated that photoprotein genes arose at the base of all animals. Photoprotein gene expression in Mnemiopsis embryos begins during gastrulation in migrating precursors to photocytes and persists throughout development in the canals where photocytes reside. We identified three putative opsin genes in the Mnemiopsis genome and show that they do not group with well-known bilaterian opsin subfamilies. Interestingly, photoprotein transcripts are co-expressed with two of the putative opsins in developing photocytes. Opsin expression is also seen in the apical sensory organ. We present evidence that one opsin functions as a photopigment in vitro, absorbing light at wavelengths that overlap with peak photoprotein light emission, raising the hypothesis that light production and light reception may be functionally connected in ctenophore photocytes. We also present genomic evidence of a complete ciliary phototransduction cascade in Mnemiopsis. CONCLUSIONS: This study elucidates the genomic organization, evolutionary history, and developmental expression of photoprotein and opsin genes in the ctenophore Mnemiopsis leidyi, introduces a novel dual role for ctenophore photocytes in both bioluminescence and phototransduction, and raises the possibility that light production and light reception are linked in this early-branching non-bilaterian animal.


Assuntos
Ctenóforos/citologia , Ctenóforos/genética , Evolução Molecular , Regulação da Expressão Gênica , Genoma/genética , Proteínas Luminescentes/genética , Opsinas/genética , Sequência de Aminoácidos , Animais , Análise por Conglomerados , Ctenóforos/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Proteínas de Fluorescência Verde/metabolismo , Luz , Transdução de Sinal Luminoso/efeitos da radiação , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Dados de Sequência Molecular , Opsinas/química , Opsinas/metabolismo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Seleção Genética , Alinhamento de Sequência , Análise de Sequência de Proteína , Análise Espectral
16.
Genome Biol ; 13(7): R64, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22830599

RESUMO

BACKGROUND: While Staphylococcus epidermidis is commonly isolated from healthy human skin, it is also the most frequent cause of nosocomial infections on indwelling medical devices. Despite its importance, few genome sequences existed and the most frequent hospital-associated lineage, ST2, had not been fully sequenced. RESULTS: We cultivated 71 commensal S. epidermidis isolates from 15 skin sites and compared them with 28 nosocomial isolates from venous catheters and blood cultures. We produced 21 commensal and 9 nosocomial draft genomes, and annotated and compared their gene content, phylogenetic relatedness and biochemical functions. The commensal strains had an open pan-genome with 80% core genes and 20% variable genes. The variable genome was characterized by an overabundance of transposable elements, transcription factors and transporters. Biochemical diversity, as assayed by antibiotic resistance and in vitro biofilm formation, demonstrated the varied phenotypic consequences of this genomic diversity. The nosocomial isolates exhibited both large-scale rearrangements and single-nucleotide variation. We showed that S. epidermidis genomes separate into two phylogenetic groups, one consisting only of commensals. The formate dehydrogenase gene, present only in commensals, is a discriminatory marker between the two groups. CONCLUSIONS: Commensal skin S. epidermidis have an open pan-genome and show considerable diversity between isolates, even when derived from a single individual or body site. For ST2, the most common nosocomial lineage, we detect variation between three independent isolates sequenced. Finally, phylogenetic analyses revealed a previously unrecognized group of S. epidermidis strains characterized by reduced virulence and formate dehydrogenase, which we propose as a clinical molecular marker.


Assuntos
Infecções Relacionadas a Cateter/microbiologia , Infecção Hospitalar/microbiologia , Análise de Sequência de DNA/métodos , Pele/microbiologia , Staphylococcus epidermidis/classificação , Staphylococcus epidermidis/genética , Farmacorresistência Bacteriana , Evolução Molecular , Variação Genética , Genoma Bacteriano , Humanos , Dados de Sequência Molecular , Tipagem Molecular , Filogenia , Staphylococcus epidermidis/isolamento & purificação
17.
Genome Res ; 17(6): 760-74, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17567995

RESUMO

A key component of the ongoing ENCODE project involves rigorous comparative sequence analyses for the initially targeted 1% of the human genome. Here, we present orthologous sequence generation, alignment, and evolutionary constraint analyses of 23 mammalian species for all ENCODE targets. Alignments were generated using four different methods; comparisons of these methods reveal large-scale consistency but substantial differences in terms of small genomic rearrangements, sensitivity (sequence coverage), and specificity (alignment accuracy). We describe the quantitative and qualitative trade-offs concomitant with alignment method choice and the levels of technical error that need to be accounted for in applications that require multisequence alignments. Using the generated alignments, we identified constrained regions using three different methods. While the different constraint-detecting methods are in general agreement, there are important discrepancies relating to both the underlying alignments and the specific algorithms. However, by integrating the results across the alignments and constraint-detecting methods, we produced constraint annotations that were found to be robust based on multiple independent measures. Analyses of these annotations illustrate that most classes of experimentally annotated functional elements are enriched for constrained sequences; however, large portions of each class (with the exception of protein-coding sequences) do not overlap constrained regions. The latter elements might not be under primary sequence constraint, might not be constrained across all mammals, or might have expendable molecular functions. Conversely, 40% of the constrained sequences do not overlap any of the functional elements that have been experimentally identified. Together, these findings demonstrate and quantify how many genomic functional elements await basic molecular characterization.


Assuntos
Evolução Molecular , Genoma Humano , Mamíferos/genética , Fases de Leitura Aberta , Filogenia , Alinhamento de Sequência , Animais , Projeto Genoma Humano , Humanos
18.
Genome Res ; 16(6): 796-803, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16672307

RESUMO

Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection Initiative. Here we present 10,967 full ORF verified cDNA clones (8049 from X. laevis and 2918 from X. tropicalis) as a community resource. Because the genome of X. laevis, but not X. tropicalis, has undergone allotetraploidization, comparison of coding sequences from these two clawed (pipid) frogs provides a unique angle for exploring the molecular evolution of duplicate genes. Within our clone set, we have identified 445 gene trios, each comprised of an allotetraploidization-derived X. laevis gene pair and their shared X. tropicalis ortholog. Pairwise dN/dS, comparisons within trios show strong evidence for purifying selection acting on all three members. However, dN/dS ratios between X. laevis gene pairs are elevated relative to their X. tropicalis ortholog. This difference is highly significant and indicates an overall relaxation of selective pressures on duplicated gene pairs. We have found that the paralogs that have been lost since the tetraploidization event are enriched for several molecular functions, but have found no such enrichment in the extant paralogs. Approximately 14% of the paralogous pairs analyzed here also show differential expression indicative of subfunctionalization.


Assuntos
Sequência de Bases , Biblioteca Gênica , Poliploidia , Xenopus laevis/genética , Xenopus/genética , Animais , Evolução Molecular , Expressão Gênica , Genes Duplicados , Genoma , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Filogenia , Homologia de Sequência do Ácido Nucleico
19.
Dev Biol ; 254(1): 102-15, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12606285

RESUMO

Our interest in the coordination of cell cycle control and differentiation has led us to investigate the Caenorhabditis elegans cye-1 gene encoding the G(1) cell cycle regulator cyclin E. We have studied the expression and function of cye-1 by using monoclonal antibodies directed against CYE-1 protein, cye-1::GFP reporter genes, and a cye-1 chromosomal deletion mutation. We show that a ubiquitous embryonic pattern of expression becomes restricted and dynamic during postembryonic development. Promoter analysis reveals a relatively small region of cis-acting sequences that are necessary for the complex pattern of expression of this gene. Our studies demonstrate that two other G(1) cell cycle genes, encoding cyclin D and CDK4/6, have similarly compact promoter requirements. This suggests that a relatively simple mechanism of regulation may underlie the dynamic developmental patterns of expression exhibited by these three G(1) cell cycle genes. Our analysis of a new cye-1 deletion allele confirms and extends previous studies of two point mutations in the gene.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Ciclina E/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Ciclina E/química , Primers do DNA , Fase G1 , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA