Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 8(10): 1345-1365, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37608742

RESUMO

The integration of two-dimensional (2D) van der Waals materials with nanostructures has triggered a wide spectrum of optical and optoelectronic applications. Photonic structures of conventional materials typically lack efficient reconfigurability or multifunctionality. Atomically thin 2D materials can thus generate new functionality and reconfigurability for a well-established library of photonic structures such as integrated waveguides, optical fibers, photonic crystals, and metasurfaces, to name a few. Meanwhile, the interaction between light and van der Waals materials can be drastically enhanced as well by leveraging micro-cavities or resonators with high optical confinement. The unique van der Waals surfaces of the 2D materials enable handiness in transfer and mixing with various prefabricated photonic templates with high degrees of freedom, functionalizing as the optical gain, modulation, sensing, or plasmonic media for diverse applications. Here, we review recent advances in synergizing 2D materials to nanophotonic structures for prototyping novel functionality or performance enhancements. Challenges in scalable 2D materials preparations and transfer, as well as emerging opportunities in integrating van der Waals building blocks beyond 2D materials are also discussed.

2.
Small Methods ; 6(6): e2200116, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35460198

RESUMO

Molybdenum disulfide (MoS2 ) is considered a fascinating material for next-generation semiconducting applications due to its outstanding mechanical stability and direct transition characteristics comparable to silicon. However, its application to stretchable platforms still is a challenging issue in wearable logic devices and sensors with noble form-factors required for future industry. Here, an omnidirectionally stretchable MoS2 platform with laser-induced strained structures is demonstrated. The laser patterning induces the pyrolysis of MoS2 precursors as well as the weak adhesion between Si and SiO2 layers. The photothermal expansion of the Si layer results in the crumpling of SiO2 and MoS2 layers and the field-effect transistors with the crumpled MoS2 are found to be suitable for strain sensor applications. The electrical performance of the crumpled MoS2 depends on the degree of stretching, showing the stable omnidirectional stretchability up to 8% with approximately four times higher saturation current than its initial state. This platform is expected to be applied to future electronic devices, sensors, and so on.

3.
ACS Appl Mater Interfaces ; 13(45): 54536-54542, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34730950

RESUMO

Two-dimensional materials have attracted great attention for their outstanding electronic properties. In particular, molybdenum disulfide (MoS2) shows great potential as a next-generation semiconductor due to its tunable direct bandgap with a high on-off ratio and extraordinary stability. However, the performance of MoS2 synthesized by physical vapor deposition has been limited by contact resistance between an electrode and MoS2, which determines overall device characteristics. Here, in order to reduce the contact resistance, we use in situ sulfurization of Mo by H2S gas treatment masked by a patterned graphene gas barrier, so that the Mo channel area can be selectively formed, resulting in a gradual edge contact between Mo and MoS2. Compared with field-effect transistors with a top contact between the Au/Ti electrode and the MoS2 channel, a gradual edge contact between the Mo electrode and the MoS2 channel provides a considerably enhanced electrical performance.

4.
ACS Nano ; 14(7): 8485-8494, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32579342

RESUMO

Transition metal dichalcogenides (TMDs) have attracted significant interest as one of the key materials in future electronics such as logic devices, optoelectrical devices, and wearable electronics. However, a complicated synthesis method and multistep processes for device fabrication pose major hurdles for their practical applications. Here, we introduce a direct and rapid method for layer-selective synthesis of MoS2 and WS2 structures in wafer-scale using a pulsed laser annealing system (λ = 1.06 µm, pulse duration ∼100 ps) in ambient conditions. The precursor layer of each TMD, which has at least 3 orders of magnitude higher absorption coefficient than those of neighboring layers, rigorously absorbed the incoming energy of the laser pulse and rapidly pyrolyzed in a few nanoseconds, enabling the generation of a MoS2 or WS2 layer without damaging the adjacent layers of SiO2 or polymer substrate. Through experimental and theoretical studies, we establish the underlying principles of selective synthesis and optimize the laser annealing conditions, such as laser wavelength, output power, and scribing speed, under ambient condition. As a result, individual homostructures of patterned MoS2 and WS2 layers were directly synthesized on a 4 in. wafer. Moreover, a consecutive synthesis of the second layer on top of the first synthesized layer realized a vertically stacked WS2/MoS2 heterojunction structure, which can be treated as a cornerstone of electronic devices. As a proof of concept, we demonstrated the behavior of a MoS2-based field-effect transistor, a skin-attachable motion sensor, and a MoS2/WS2-based heterojunction diode in this study. The ultrafast and selective synthesis of the TMDs suggests an approach to the large-area/mass production of functional heterostructure-based electronics.

5.
ACS Nano ; 13(8): 9332-9341, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31369239

RESUMO

Weavable sensing fibers with superior mechanical strength and sensing functionality are crucial for the realization of wearable textile sensors. However, in the fabrication of previously reported wearable sensing fibers, additional processes such as reduction, doping, and coating were essential to satisfy both requirements. The sensing fibers should be continuously synthesized in a scalable process for commercial applications with high reliability and productivity, which was challenging. In this study, we first synthesize mass-producible wearable sensing fibers with good mechanical properties and sensing functionality without additional processes by incorporating carbon nanotubes (CNTs) into distinct nanocellulose. Nanocellulose extracted from tunicate (TCNF) is homogeneously composited with single-walled CNTs, and composite fibers (TCNF/CNT) are continuously produced in aligned directions by wet spinning, facilitating liquid-crystal properties. The TCNF/CNT fibers exhibit a superior gas (NO2)-sensing performance with high selectivity and sensitivity (parts-per-billion detection). In addition, the TCNF/CNT fibers can endure complex and harsh distortions maintaining their intrinsic sensing properties and can be perfectly integrated with conventional fabrics using a direct weaving process. Our meter-scale scalable synthesis of functional composite fibers is expected to provide a mass production platform of versatile wearable sensors.


Assuntos
Técnicas Biossensoriais , Celulose/química , Nanotubos de Carbono/química , Dispositivos Eletrônicos Vestíveis , Animais , Humanos , Nanofibras/química , Óxido Nítrico/química , Óxido Nítrico/isolamento & purificação , Têxteis , Urocordados/química
6.
ACS Appl Mater Interfaces ; 10(20): 16932-16938, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29745644

RESUMO

We propose a silver precursor with in situ reduction under an adhesive substrate with a silver precursor penetration effect. It shows a high durability under mechanical deformation resulting from the composite form of the Ag-penetrated electrode adhesive. This stretchable electrode in which the silver particles are tightly penetrated into the adhesive with a confining effect can be used for various purposes since it offers water-proof properties and a high mechanical stability up to 70% strain, radius of curvature 0.5 mm ( R/ R0< 1.5), and electrical resistance of 0.58 ± 0.063 kΩ â–¡-1 by adhering to the multipurpose application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA