Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Adv Sci (Weinh) ; : e2307545, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666393

RESUMO

Adapted immune cells are known to develop memory functions that increase resistance to subsequent infections after initial pathogen exposure, however, it is unclear whether non-immune cells, like tissue-resident stem cells, have similar memory functions. Here, it is found that tissue-resident stem cells crucial for tissue regeneration show diminished adverse effects on diverse stem cell functions against successive exposure to foreign antigen (ß-glucan) to maintain tissue homeostasis and stability both in vitro and in vivo. These data suggest that endometrial stem cells may possess a robust memory function, in contrast, fully differentiated cells like fibroblasts and vesicular cells do not show these memory mechanisms upon consecutive antigen exposure. Moreover, the pivotal role of Angiopoietin-like 4 (ANGPTL4) in regulating the memory functions of endometrial stem cells is identified through specific shRNA knockdown in vitro and knockout mice in vivo experiments. ANGPTL4 is associated with the alteration of diverse stem cell functions and epigenetic modifications, notably through histone H3 methylation changes and two pathways (i.e., PI3K/Akt and FAK/ERK1/2 signaling) upon consecutive antigen exposure. These findings imply the existence of inherent self-defense mechanisms through which local stem cells can adapt and protect themselves from recurrent antigenic challenges, ultimately mitigating adverse consequences.

2.
Biofabrication ; 16(2)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277677

RESUMO

Conventional 2D or even recently developed 3Din vitroculture models for hypothalamus and pituitary gland cannot successfully recapitulate reciprocal neuroendocrine communications between these two pivotal neuroendocrine tissues known to play an essential role in controlling the body's endocrine system, survival, and reproduction. In addition, most currentvitroculture models for neuroendocrine tissues fail to properly reflect their complex multicellular structure. In this context, we developed a novel microscale chip platform, termed the 'hypothalamic-pituitary (HP) axis-on-a-chip,' which integrates various cellular components of the hypothalamus and pituitary gland with biomaterials such as collagen and hyaluronic acid. We used non-toxic blood coagulation factors (fibrinogen and thrombin) as natural cross-linking agents to increase the mechanical strength of biomaterials without showing residual toxicity to overcome drawbacks of conventional chemical cross-linking agents. Furthermore, we identified and verified SERPINB2 as a reliable neuroendocrine toxic marker, with its expression significantly increased in both hypothalamus and pituitary gland cells following exposure to various types of toxins. Next, we introduced SERPINB2-fluorescence reporter system into loaded hypothalamic cells and pituitary gland cells within each chamber of the HP axis on a chip, respectively. By incorporating this SERPINB2 detection system into the loaded hypothalamic and pituitary gland cells within our chip platform, Our HP axis-on-chip platform can better mimic reciprocal neuroendocrine crosstalk between the hypothalamus and the pituitary gland in the brain microenvironments with improved efficiency in evaluating neuroendocrine toxicities of certain drug candidates.


Assuntos
Sistemas Microfisiológicos , Hipófise , Hipófise/metabolismo , Hipotálamo/metabolismo , Encéfalo , Materiais Biocompatíveis/metabolismo
3.
Cell Commun Signal ; 21(1): 323, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950232

RESUMO

BACKGROUND: Although acetylsalicylic acid has been widely used for decades to treat and prevent various diseases, its potential effects on endometrial receptivity and subsequent pregnancy rates are still controversial due to conflicting data: many reports have shown positive effects of acetylsalicylic acid, whereas others have found that it has no effect. Furthermore, the direct effects of acetylsalicylic acid on various functions of normal endometrial cells, especially endometrial stem cells, and their underlying molecular mechanisms have not yet been proven. Recently, studies have revealed that a reduced number of active stem/progenitor cells within endometrial tissue limits cyclic endometrial regeneration and subsequently decreases pregnancy success rates, suggesting that endometrial stem cells play a critical role in endometrial regeneration and subsequent endometrial receptivity. METHODS: We assessed whether aspirin treatment can inhibit various endometrial stem cell functions related to regenerative capacity, such as self-renewal, migration, pluripotency/stemness, and differentiation capacity, in vitro. Next, we evaluated whether SERPINB2 regulates the effects of aspirin on endometrial stem cell functions by depleting SERPINB2 expression with specific shRNA targeting SERPINB2. To further investigate whether aspirin also inhibits various endometrial stem cell functions in vivo, aspirin was administered daily to mice through intraperitoneal (i.p.) injection for 7 days. RESULTS: In addition to its previously identified roles, to the best of our knowledge, we found for the first time that acetylsalicylic acid directly inhibits various human endometrial stem cell functions related to regenerative capacity (i.e., self-renewal, migration, differentiation, and capacity) through its novel target gene SERPINB2 in vitro. Acetylsalicylic acid exerts its function by suppressing well-known prosurvival pathways, such as Akt and/or ERK1/2 signaling, through a SERPINB2 signaling cascade. Moreover, we also found that acetylsalicylic acid markedly inhibits regenerative capacity-related functions in endometrial stem cells within tissue. CONCLUSIONS: We have found that acetylsalicylic acid has diverse effects on various endometrial stem cell functions related to regenerative capacity. Our findings are a critical step toward the development of more effective therapeutic strategies to increase the chances of successful pregnancy. Video Abstract.


Assuntos
Aspirina , Células-Tronco , Gravidez , Feminino , Animais , Camundongos , Humanos , Aspirina/farmacologia , Aspirina/metabolismo , Endométrio/metabolismo , Transdução de Sinais , Diferenciação Celular
4.
J Med Internet Res ; 25: e45146, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37585250

RESUMO

BACKGROUND: Methylphenidate is an effective first-line treatment for attention-deficit/hyperactivity disorder (ADHD). However, many adverse effects of methylphenidate have been recorded from randomized clinical trials and patient-reported outcomes, but it is difficult to determine abuse from them. In the context of COVID-19, it is important to determine how drug use evaluation, as well as misuse of drugs, have been affected by the pandemic. As people share their reasons for using medication, patient sentiments, and the effects of medicine on social networking services (SNSs), the application of machine learning and SNS data can be a method to overcome the limitations. Proper machine learning models could be evaluated to validate the effects of the COVID-19 pandemic on drug use. OBJECTIVE: To analyze the effect of the COVID-19 pandemic on the use of methylphenidate, this study analyzed the adverse effects and nonmedical use of methylphenidate and evaluated the change in frequency of nonmedical use based on SNS data before and after the outbreak of COVID-19. Moreover, the performance of 4 machine learning models for classifying methylphenidate use based on SNS data was compared. METHODS: In this cross-sectional study, SNS data on methylphenidate from Twitter, Facebook, and Instagram from January 2019 to December 2020 were collected. The frequency of adverse effects, nonmedical use, and drug use before and after the COVID-19 pandemic were compared and analyzed. Interrupted time series analysis about the frequency and trends of nonmedical use of methylphenidate was conducted for 24 months from January 2019 to December 2020. Using the labeled training data set and features, the following 4 machine learning models were built using the data, and their performance was evaluated using F-1 scores: naïve Bayes classifier, random forest, support vector machine, and long short-term memory. RESULTS: This study collected 146,352 data points and detected that 4.3% (6340/146,352) were firsthand experience data. Psychiatric problems (521/1683, 31%) had the highest frequency among the adverse effects. The highest frequency of nonmedical use was for studies or work (741/2016, 36.8%). While the frequency of nonmedical use before and after the outbreak of COVID-19 has been similar (odds ratio [OR] 1.02 95% CI 0.91-1.15), its trend has changed significantly due to the pandemic (95% CI 2.36-22.20). Among the machine learning models, RF had the highest performance of 0.75. CONCLUSIONS: The trend of nonmedical use of methylphenidate has changed significantly due to the COVID-19 pandemic. Among the machine learning models using SNS data to analyze the adverse effects and nonmedical use of methylphenidate, the random forest model had the highest performance.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , COVID-19 , Estimulantes do Sistema Nervoso Central , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Metilfenidato , Transtornos Relacionados ao Uso de Substâncias , Humanos , Metilfenidato/efeitos adversos , Estimulantes do Sistema Nervoso Central/efeitos adversos , Teorema de Bayes , Estudos Transversais , Pandemias , COVID-19/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Surtos de Doenças , Aprendizado de Máquina
5.
J Dent Sci ; 18(3): 1177-1188, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37404665

RESUMO

Background: /purpose: Dental pulp plays an important role in the maintenance of tooth homeostasis and repair. The aging of dental pulp affects the functional life of the tooth owing to the senescence of dental pulp cells. Toll-like receptor 4 (TLR4) is involved in regulating cellular senescence in dental pulp. We have recently demonstrated that visfatin induces the senescence of human dental pulp cells (hDPCs). Here, we explored the association of TLR4 with visfatin signaling in cellular senescence in hDPCs. Materials and methods: mRNA levels were determined using reverse transcription polymerase chain reaction (PCR) and quantitative real time-PCR. Protein levels were determined using immunofluorescence staining and Western blot analysis. Gene silencing was performed using small interfering RNA. The degree of cellular senescence was measured by senescence-associated-ß-galactosidase (SA-ß-gal) staining. Oxidative stress was determined by measurement of NADP/NADPH levels and intracellular reactive oxygen species (ROS) levels. Results: Neutralizing anti-TLR4 antibodies or TLR4 inhibitor markedly blocked visfatin-induced hDPCs senescence, as revealed by an increase in the number of SA-ß-gal-positive hDPCs and upregulation of p21 and p53 proteins. Moreover, visfatin-induced senescence was associated with excessive ROS production; NADPH consumption; telomere DNA damage induction; interleukin (IL)-1ß, IL-6, IL-8, cyclooxygenase-2, and tumor necrosis factor-α upregulation; and nuclear factor-κB and mitogen-activated protein kinase activation. All of these alterations were attenuated by TLR4 blockade. Conclusion: Our findings indicate that TLR4 plays an important role in visfatin-induced senescence of hDPCs and suggest that the visfatin/TLR4 signaling axis can be a novel therapeutic target for the treatment of inflammaging-related diseases, including pulpitis.

6.
Biomater Res ; 27(1): 33, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085887

RESUMO

BACKGROUND: The endometrium, the inner lining of the uterine cavity, plays essential roles in embryo implantation and its subsequent development. Although some positive results were preliminarily archived, the regeneration of damaged endometrial tissues by administrating stem cells only is very challenging due to the lack of specific microenvironments and their low attachment rates at the sites of injury. In this context, various biomaterial-based scaffolds have been used to overcome these limitations by providing simple structural support for cell attachment. However, these scaffold-based strategies also cannot properly reflect patient tissue-specific structural complexity and thus show only limited therapeutic effects. METHOD: Therefore, in the present study, we developed a customizable Lego-like multimodular endometrial tissue architecture by assembling individually fabricated tissue blocks. RESULTS: Each tissue block was fabricated by incorporating biodegradable biomaterials and certain endometrial constituent cells. Each small tissue block was effectively fabricated by integrating conventional mold casting and 3D printing techniques. The fabricated individual tissue blocks were properly assembled into a larger customized tissue architecture. This structure not only properly mimics the patient-specific multicellular microenvironment of the endometrial tissue but also properly responds to key reproductive hormones in a manner similar to the physiological functions. CONCLUSION: This customizable modular tissue assembly allows easy and scalable configuration of a complex patient-specific tissue microenvironment, thus accelerating various tissue regeneration procedures.

7.
J Chem Inf Model ; 63(5): 1429-1437, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36821004

RESUMO

Data-driven drug discovery exploits a comprehensive set of big data to provide an efficient path for the development of new drugs. Currently, publicly available bioassay data sets provide extensive information regarding the bioactivity profiles of millions of compounds. Using these large-scale drug screening data sets, we developed a novel in silico method to virtually screen hit compounds against protein targets, named BEAR (Bioactive compound Enrichment by Assay Repositioning). The underlying idea of BEAR is to reuse bioassay data for predicting hit compounds for targets other than their originally intended purposes, i.e., "assay repositioning". The BEAR approach differs from conventional virtual screening methods in that (1) it relies solely on bioactivity data and requires no physicochemical features of either the target or ligand. (2) Accordingly, structurally diverse candidates are predicted, allowing for scaffold hopping. (3) BEAR shows stable performance across diverse target classes, suggesting its general applicability. Large-scale cross-validation of more than a thousand targets showed that BEAR accurately predicted known ligands (median area under the curve = 0.87), proving that BEAR maintained a robust performance even in the validation set with additional constraints. In addition, a comparative analysis demonstrated that BEAR outperformed other machine learning models, including a recent deep learning model for ABC transporter family targets. We predicted P-gp and BCRP dual inhibitors using the BEAR approach and validated the predicted candidates using in vitro assays. The intracellular accumulation effects of mitoxantrone, a well-known P-gp/BCRP dual substrate for cancer treatment, confirmed nine out of 72 dual inhibitor candidates preselected by primary cytotoxicity screening. Consequently, these nine hits are novel and potent dual inhibitors for both P-gp and BCRP, solely predicted by bioactivity profiles without relying on any structural information of targets or ligands.


Assuntos
Descoberta de Drogas , Proteínas de Neoplasias , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Descoberta de Drogas/métodos , Aprendizado de Máquina , Big Data
8.
Transl Vis Sci Technol ; 11(10): 17, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36223127

RESUMO

Purpose: This study aimed to evaluate the effect of transcutaneous electrical stimulation (TES) on corneal nerve regeneration in rabbits injured from superficial lamellar keratectomy (SLK). Methods: New Zealand White rabbits were used in this experimental study. To induce corneal nerve damage, SLK was performed using a 7.0-mm trephine. TES was applied for 28 days after the corneal nerve injury. Corneal sensitivity, Western blotting, real-time polymerase chain reaction (PCR), and immunofluorescence were performed to observe changes in the corneal tissue. Results: In the 2-Hz and 20-Hz electrical stimulation groups, the degree of corneal wound healing increased by more than 10% compared to the control group, but no significant difference was observed. Conversely, the electrical stimulation (2-Hz or 20-Hz) group showed significantly increased corneal sensitivity compared to the control group. Western blot analysis revealed that small proline-rich protein 1A (SPRR1a), a regeneration-associated protein was significantly increased in the 2-Hz group on days 1 and 7 compared to that in the other groups. Once again, nerve regeneration in the 2-Hz group was supported by the results of PCR, in which a significant increase in the nerve growth factor (NGF) on day 1 was observed compared with the other groups. Moreover, immunofluorescence after 28 days of electrical stimulation showed significant nerve regeneration in the 2-Hz group. Conclusions: TES promoted corneal nerve regeneration in rabbit SLK model. The application of electrical stimulation of 2-Hz frequency was more effective than the 20-Hz frequency, showing potential clinical applications for corneal diseases. Translational Relevance: This study shows how application of TES to the eyes that exhibit corneal nerve damage can improve corneal nerve regeneration examined by histologic analysis.


Assuntos
Lesões da Córnea , Estimulação Elétrica Nervosa Transcutânea , Animais , Córnea/inervação , Córnea/fisiologia , Córnea/cirurgia , Lesões da Córnea/terapia , Proteínas Ricas em Prolina do Estrato Córneo , Ceratectomia , Fator de Crescimento Neural , Coelhos , Estimulação Elétrica Nervosa Transcutânea/métodos
9.
Exp Mol Med ; 54(9): 1524-1535, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36117220

RESUMO

Follicle-stimulating hormone (FSH) promotes the production and secretion of estrogen, which in turn stimulates the growth and maturation of ovarian follicles. Therefore, consecutive FSH treatment to induce ovarian hyperstimulation (superovulation) is still considered the most cost-effective option for the majority of assisted reproductive technologies (ARTs). However, a relatively high cancellation rate and subsequent low pregnancy outcomes (approximately 15%) are the most challenging aspects of this FSH-based ART. Currently, the main cause for this low implantation rate of FSH-based ART has not yet been revealed. Therefore, we hypothesized that these high cancellation rates with FSH-based superovulation protocols might be associated with the harmful effects of consecutive FSH treatment. Importantly, several recent studies have revealed that tissue-resident stem cell deficiency can significantly reduce cyclic endometrial regeneration and subsequently decrease the pregnancy outcome. In this context, we investigated whether FSH treatment could directly inhibit endometrial stem cell functions and consequently suppress endometrial regeneration. Consistent with our hypothesis, our results revealed for the first time that FSH could inhibit various regeneration-associated functions of endometrial stem cells, such as self-renewal, migration, and multilineage differentiation capacities, via the PI3K/Akt and ERK1/2 signaling pathways both in vitro and in vivo.


Assuntos
Hormônio Foliculoestimulante , Proteínas Relacionadas à Folistatina , Estrogênios/farmacologia , Feminino , Fertilização in vitro/métodos , Hormônio Foliculoestimulante/farmacologia , Humanos , Fosfatidilinositol 3-Quinases , Gravidez , Proteínas Proto-Oncogênicas c-akt , Células-Tronco
10.
Stem Cell Res Ther ; 13(1): 404, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35932085

RESUMO

BACKGROUND: Smokers directly inhale mainstream cigarette smoke, which contains numerous known and potential toxic substances, and thus, smoking is expected to have broad harmful effects that cause tissue injury and dysfunction. Interestingly, many studies have suggested that the recent decline in female fertility and increased rate of spontaneous abortion could be associated with increased smoking rates. Indeed, women that smoked for 10 years or more were reported to have a ~ 20% higher infertility rate than women that had never smoked. However, the reasons for the underlying harmful aspects of smoking on female fertility remain a matter of debate. Importantly, a previous study revealed that resident endometrial stem cell deficiency significantly limits the cyclic regeneration potential of endometrium, which, in turn, decreases successful pregnancy outcomes. In this context, we postulated that exposure to mainstream cigarette smoke extracts might decrease female fertility by inhibiting the functions of resident endometrial stem cells. METHODS: We investigated whether cigarette mainstream smoke exposure directly inhibits various tissue regeneration-associated functions of endometrial stem cells, such as self-renewal, migration, pluripotency, and differentiation capacity in vitro. Next, we determined whether SERPINB2 mediates cigarette smoke-induced suppressive effects on various tissue regeneration-associated functions by depleting SERPINB2 expression with specific shRNA targeting SERPINB2. Mice were injected intraperitoneally with low (0.5 mg/kg) or high (1 mg/kg) doses of cigarette smoke extract (10 times for two weeks), and endometrial stem cells were then isolated from mice uterine tissues. RESULTS: We found that exposure to cigarette smoke extracts remarkably suppressed various tissue regeneration-associated functions of endometrial stem cells, such as self-renewal, migration, multilineage differentiation ability, and pluripotency in vitro and in vivo by activating the SERPINB2 gene. Indeed, cigarette smoke-induced inhibitory effects on various endometrial stem cell functions were significantly abolished by SERPINB2 knockdown. CONCLUSIONS: These findings provide valuable information on the harmful effects of cigarette smoking on resident endometrial stem cells and hopefully will facilitate the developments of promising therapeutic strategies for subfertile or infertile women that smoke cigarettes.


Assuntos
Infertilidade Feminina , Animais , Diferenciação Celular/genética , Endométrio , Feminino , Humanos , Infertilidade Feminina/metabolismo , Camundongos , Gravidez , Fumar/efeitos adversos , Fumar/genética , Células-Tronco
11.
Cell Death Dis ; 13(7): 605, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831270

RESUMO

Luteinizing hormone (LH) stimulates the synthesis and secretion of the key steroid hormone estrogen, which subsequently promotes ovarian follicular growth and development. Therefore, the administration of exogenous LH to achieve superovulation (multiple ovulations) and an LH surge is commonly used as the most effective therapeutic option in a majority of in vitro fertilization (IVF) clinics. However, a relatively low pregnancy rate (between 20% and 35%) is one of the most challenging aspects of LH-based infertility treatment. Furthermore, the major cause of this low pregnancy rate in LH-based infertility treatment remains unidentified. Recent studies have shown that endometrial stem cell loss or deficiency can significantly decrease tissue regeneration ability during the menstrual cycle and reduce endometrial receptivity. In this context, we postulated that the low pregnancy rates following LH-based ovarian hyperactivation may be the result of the adverse effects of consecutive exogenous LH administration on endometrial stem cells. To the best of our knowledge, this study revealed for the first time that in addition to its previously reported roles in stimulating ovarian functions through the pituitary-gonadal axis, LH brings about the extragonadal suppression of various tissue regeneration-associated functions in endometrial stem cells, such as self-renewal, migration ability, multilineage differentiation potential, and pluripotency/stemness, by inhibiting pro-survival Akt and ERK1/2 signaling pathways in vitro and in vivo, and as a consequence, it decreases the endometrial receptivity.


Assuntos
Infertilidade , Hormônio Luteinizante , Endométrio/metabolismo , Estradiol/farmacologia , Feminino , Fertilização in vitro , Hormônio Foliculoestimulante/metabolismo , Humanos , Hormônio Luteinizante/farmacologia , Gravidez , Células-Tronco/metabolismo
12.
Exp Mol Med ; 53(12): 1850-1865, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34857902

RESUMO

Fine particulate matter (PM) has a small diameter but a large surface area; thus, it may have broad toxic effects that subsequently damage many tissues of the human body. Interestingly, many studies have suggested that the recent decline in female fertility could be associated with increased PM exposure. However, the precise mechanisms underlying the negative effects of PM exposure on female fertility are still a matter of debate. A previous study demonstrated that resident stem cell deficiency limits the cyclic regenerative capacity of the endometrium and subsequently increases the pregnancy failure rate. Therefore, we hypothesized that PM exposure induces endometrial tissue damage and subsequently reduces the pregnancy rate by inhibiting various beneficial functions of local endometrial stem cells. Consistent with our hypothesis, we showed for the first time that PM exposure significantly inhibits various beneficial functions of endometrial stem cells, such as their self-renewal, transdifferentiation, and migratory capacities, in vitro and in vivo through the PM target gene SERPINB2, which has recently been shown to be involved in multiple stem cell functions. In addition, the PM-induced inhibitory effects on the beneficial functions of endometrial stem cells were significantly diminished by SERPINB2 depletion. Our findings may facilitate the development of promising therapeutic strategies for improving reproductive outcomes in infertile women.


Assuntos
Endométrio/citologia , Endométrio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Material Particulado , Células-Tronco/citologia , Células-Tronco/metabolismo , Apoptose , Biomarcadores , Biologia Computacional/métodos , Metabolismo Energético , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicólise , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação Oxidativa , Transdução de Sinais
13.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34576146

RESUMO

Drug discovery based on artificial intelligence has been in the spotlight recently as it significantly reduces the time and cost required for developing novel drugs. With the advancement of deep learning (DL) technology and the growth of drug-related data, numerous deep-learning-based methodologies are emerging at all steps of drug development processes. In particular, pharmaceutical chemists have faced significant issues with regard to selecting and designing potential drugs for a target of interest to enter preclinical testing. The two major challenges are prediction of interactions between drugs and druggable targets and generation of novel molecular structures suitable for a target of interest. Therefore, we reviewed recent deep-learning applications in drug-target interaction (DTI) prediction and de novo drug design. In addition, we introduce a comprehensive summary of a variety of drug and protein representations, DL models, and commonly used benchmark datasets or tools for model training and testing. Finally, we present the remaining challenges for the promising future of DL-based DTI prediction and de novo drug design.


Assuntos
Aprendizado Profundo , Descoberta de Drogas , Inquéritos e Questionários , Animais , Desenho de Fármacos , Desenvolvimento de Medicamentos , Humanos , Redes Neurais de Computação , Preparações Farmacêuticas/química
14.
Biofabrication ; 13(4)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34284368

RESUMO

Thin endometrium lining or severe endometrial injury which may occur during artificial abortion can cause defective endometrial receptivity and subsequent infertility. Therefore, much effort has been devoted toward regenerating thin or damaged endometrial lining by applying multiple types of stem cells. Even though there are some positive preliminary outcomes, repairing the injured endometrium with stem cells is considerably challenging, due to the lack of an adequate microenvironment for the administrated stem cells within the tissues and subsequent poor therapeutic efficiency. In this context, as an alternative, we fabricated a 3D stem cell-laden artificial endometrium by incorporating several biodegradable biomaterials (collagen and hyaluronic acid) and multiple cellular components of endometrium (endometrial stem cells, stromal cells, and vessel cells) to properly recapitulate the multicellular microenvironment and multilayered structure. Agarose was used as an inert filler substrate to enhance the mechanical integrity of the three-layered artificial endometrium. Various mechanical characteristics, such as morphology, compression properties, swelling, and viscosity, have been evaluated. Various biological features, such as steroid hormone responsiveness, specific endometrial cell-surface marker expressions, and the secretion of multiple growth factors and steroid hormones, as well as the viability of encapsulated endometrial cells are relatively well maintained within the artificial endometrium. More importantly, severe tissue injuries were significantly relieved by transplanting our 3D artificial endometrium into endometrial ablation mice. Remarkably, artificial endometrium transplantation resulted in a successful pregnancy with subsequent live birth without any morphological or chromosomal abnormalities.


Assuntos
Endométrio , Células-Tronco , Animais , Colágeno , Feminino , Camundongos , Gravidez , Regeneração , Células Estromais
15.
Cell Death Dis ; 12(6): 612, 2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34120144

RESUMO

Chronic stress has a negative impact on many fertility-related functions; thus, the recent decline in female fertility seems to be at least partially associated with increased stress. The secretion of glucocorticoids is a typical endocrine response to chronic stress and indirectly reduces uterine receptivity through the hypothalamus-pituitary-gonadal (HPG) axis. However, in addition to its well-known canonical role, the direct effects of chronic stress-induced glucocorticoids on various uterine functions and their underlying molecular mechanisms are complex and have not yet been revealed. Recent studies have found that resident stem cell deficiency is responsible for the limited regenerative potential of the endometrium (the innermost lining of the uterine cavity) during each menstrual cycle, which subsequently increases infertility rates. In this context, we hypothesized that stress-induced glucocorticoids directly damage endometrial stem cells and consequently negatively affect endometrial reconstruction, which is important for uterine receptivity. In addition to its well-known canonical roles, we identified for the first time that cortisol, the most abundant and potent glucocorticoid in humans, directly suppresses the multiple beneficial functions (self-renewal, transdifferentiation, and migratory potential) of human endometrial stem cells through its functional receptor, glucocorticoid receptor (GR). Glucocorticoids inhibit well-known survival signals, such as the PI3K/Akt and FAK/ERK1/2 pathways. More importantly, we also found that immobilization of stress-induced glucocorticoids suppresses the various beneficial functions of tissue resident stem cells in vivo. To the best of our knowledge, this is the first study to investigate the direct effects of glucocorticoids on the regenerative capacity of endometrial stem cells, and the findings will facilitate the development of more promising therapeutic approaches to increase female fertility.


Assuntos
Endométrio/efeitos dos fármacos , Glucocorticoides/farmacologia , Células-Tronco/efeitos dos fármacos , Animais , Células Cultivadas , Endométrio/citologia , Endométrio/metabolismo , Feminino , Fertilidade/efeitos dos fármacos , Fertilidade/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Receptores de Glucocorticoides/metabolismo , Regeneração/efeitos dos fármacos , Regeneração/fisiologia , Células-Tronco/fisiologia
16.
Antioxidants (Basel) ; 10(2)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578781

RESUMO

FK866 possesses various functional properties, such as anti-angiogenic, anti-cancer, and anti-inflammatory activities. We previously demonstrated that premature senescence of human dental pulp cells (hDPCs) was induced by hydrogen peroxide (H2O2). The present study aimed to investigate whether H2O2-induced premature senescence of hDPCs is affected by treatment with FK866. We found that FK866 markedly inhibited the senescent characteristics of hDPCs after exposure to H2O2, as revealed by an increase in the number of senescence-associated ß-galactosidase (SA-ß-gal)-positive hDPCs and the upregulation of the p21 and p53 proteins, which acts as molecular indicators of cellular senescence. Moreover, the stimulatory effects of H2O2 on cellular senescence are associated with oxidative stress induction, such as excessive ROS production and NADPH consumption, telomere DNA damage induction, and upregulation of senescence-associated secretory phenotype factors (IL-1ß, IL-6, IL-8, COX-2, and TNF-α) as well as NF-κB activation, which were all blocked by FK866. Thus, FK866 might antagonize H2O2-induced premature senescence of hDPCs, acting as a potential therapeutic antioxidant by attenuating oxidative stress-induced pathologies in dental pulp, including inflammation and cellular senescence.

17.
Exp Mol Med ; 52(11): 1831-1844, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33219302

RESUMO

N-α-acetyltransferase 20 (Naa20), which is a catalytic subunit of the N-terminal acetyltransferase B (NatB) complex, has recently been reported to be implicated in hepatocellular carcinoma (HCC) progression and autophagy, but the underlying mechanism remains unclear. Here, we report that based on bioinformatic analysis of Gene Expression Omnibus and The Cancer Genome Atlas data sets, Naa20 expression is much higher in HCC tumors than in normal tissues, promoting oncogenic properties in HCC cells. Mechanistically, Naa20 inhibits the activity of AMP-activated protein kinase (AMPK) to promote the mammalian target of rapamycin signaling pathway, which contributes to cell proliferation, as well as autophagy, through its N-terminal acetyltransferase (NAT) activity. We further show that liver kinase B1 (LKB1), a major regulator of AMPK activity, can be N-terminally acetylated by NatB in vitro, but also probably by NatB and/or other members of the NAT family in vivo, which may have a negative effect on AMPK activity through downregulation of LKB1 phosphorylation at S428. Indeed, p-LKB1 (S428) and p-AMPK levels are enhanced in Naa20-deficient cells, as well as in cells expressing the nonacetylated LKB1-MPE mutant; moreover, importantly, LKB1 deficiency reverses the molecular and cellular events driven by Naa20 knockdown. Taken together, our findings suggest that N-terminal acetylation of LKB1 by Naa20 may inhibit the LKB1-AMPK signaling pathway, which contributes to tumorigenesis and autophagy in HCC.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Acetiltransferase N-Terminal B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Acetilação , Autofagia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Cromatografia Líquida , Suscetibilidade a Doenças , Humanos , Neoplasias Hepáticas/patologia , Modelos Biológicos , Transdução de Sinais , Espectrometria de Massas em Tandem
18.
Biofabrication ; 13(1)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32998123

RESUMO

Conventional 2D or even 3Din vitroculture models for human reproductive organs cannot properly recapitulate the bidirectional endocrine crosstalk between the uterine endometrium and the ovary. This crosstalk is essential for maintaining the various physiological features and functions of each tissue. Moreover, mostin vitromodels for the female reproductive tract also fail to mimic its multicellular structure. We therefore developed a novel 'dual reproductive organ on a chip' that reflects the bidirectional endocrine cross-talk and the complex multicellular structures by integrating various cellular components of both the human uterine endometrium and the ovary with several biodegradable natural polymers. Indeed, the bidirectional endocrine crosstalk between these two tissues is achieved through media sharing between channels, and it can markedly improve the viability of loaded cells within each chamber of the chip platform. In addition, we also identified a reliable reproductive toxicity marker, SERPINB2, which is significantly increased in response to various toxic exposures in both endometrial and ovarian follicular cells. Based on these findings, we next established a SERPINB2 luciferase reporter system that was specifically designed for detecting and quantifying the toxicity of certain substances. By introducing this SERPINB2 luciferase reporter system into the loaded cells within the chip platform, we ultimately developed an effective 'dual reproductive organ-on-chip' that was successfully used to predict the reproductive toxicity of various hazardous materials.


Assuntos
Endométrio , Dispositivos Lab-On-A-Chip , Ovário , Fenômenos Fisiológicos Celulares , Feminino , Humanos
19.
Artigo em Inglês | MEDLINE | ID: mdl-32796609

RESUMO

Internet and smartphone addiction have become important social issues. Various studies have demonstrated their association with clinical and psychological factors, including depression, anxiety, aggression, anger expression, and behavioral inhibition, and behavioral activation systems. However, these two addictions are also highly correlated with each other, so the consideration of the relationship between internet and smartphone addiction can enhance the analysis. In this study, we considered the copula regression model to regress the bivariate addictions on clinical and psychological factors. Real data analysis with 555 students (age range: 14-15 years; males, N = 295; females, N = 265) from South Korean public middle schools is illustrated. By fitting the copula regression model, we investigated the dependency between internet and smartphone addiction and determined the risk factors associated with the two addictions. Furthermore, by comparing the model fits of the copula model with linear regression and generalized linear models, the best copula model was proposed in terms of goodness of fit. Our findings revealed that internet and smartphone addiction are not separate problems, and that associations between them should be considered. Psychological factors, such as anxiety, the behavioral inhibition system, and aggression were also significantly associated with both addictions, while ADHD symptoms were related to internet addiction only. We emphasize the need to establish policies on the prevention, management, and education of addiction.


Assuntos
Comportamento Aditivo , Internet , Smartphone , Adolescente , Ansiedade , Feminino , Humanos , Masculino , Análise de Regressão , República da Coreia
20.
Mol Ther ; 28(11): 2458-2472, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32592690

RESUMO

The major challenges of most adult stem cell-based therapies are their weak therapeutic effects caused by the loss of multilineage differentiation capacity and homing potential. Recently, many researchers have attempted to identify novel stimulating factors that can fundamentally increase the differentiation capacity and homing potential of various types of adult stem cells. Tryptophanyl-tRNA synthetase (WRS) is a highly conserved and ubiquitously expressed enzyme that catalyzes the first step of protein synthesis. In addition to this canonical function, we found for the first time that WRS is actively released from the site of injury in response to various damage signals both in vitro and in vivo and then acts as a potent nonenzymatic cytokine that promotes the self-renewal, migratory, and differentiation capacities of endometrial stem cells to facilitate the repair of damaged tissues. Furthermore, we also found that WRS, through its functional receptor cadherin-6 (CDH-6), activates major prosurvival signaling pathways, such as Akt and extracellular signal-regulated kinase (ERK)1/2 signaling. Our current study provides novel and unique insights into approaches that can significantly enhance the therapeutic effects of human endometrial stem cells in various clinical applications.


Assuntos
Citocinas/metabolismo , Endométrio/citologia , Células-Tronco/metabolismo , Triptofano-tRNA Ligase/metabolismo , Biomarcadores , Diferenciação Celular/genética , Autorrenovação Celular/genética , Feminino , Humanos , Sistema de Sinalização das MAP Quinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA