Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18670, 2024 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134586

RESUMO

Tylosin, an antibiotic with a long history in treating respiratory bacterial infections, has unknown effects on the gut microbiota of healthy and infected pigs. The study aimed to investigate the effect of a therapeutic dose of tylosin on swine gut microbiota and explored the relationship between this effect and tylosin pharmacokinetics (PK). We also assessed whether changes in gut microbiota after tylosin administration differ between healthy animals (n = 7) and animals intranasally co-infected (n = 7) with Actinobacillus pleuropneumoniae and Pasteurella multocida. Both groups were intramuscularly administered with tylosin (20 mg/kg). The 16S rRNA gene analyses revealed a significantly lower species richness and diversity, after tylosin treatment, in the infected than the healthy pigs, with infected pigs having lower levels of Bacteroidetes and Firmicutes and higher levels of Proteobacteria. Greater tylosin exposure (greater area under curve (AUC) and maximum plasma concentration (Cmax), and slower elimination (longer terminal half-life, T1/2) were observed in healthy than infected pigs. Relative abundance of Lactobacillus, Oscillibacter, Prevotella, and Sporobacter was positively and significantly correlated with AUC and Cmax, whereas the abundance of Acinetobacter, Alishewanella, and Pseudomonas was positively and significantly correlated with T1/2 and mean residence time (MRT) of tylosin. Our findings, for the first time, demonstrated significant changes in swine gut microbiota after a single therapeutic dose of tylosin was administered, whereas the effect of these changes on tylosin PK was not evident.


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Tilosina , Animais , Tilosina/farmacocinética , Tilosina/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Suínos , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Doenças dos Suínos/microbiologia , Doenças dos Suínos/tratamento farmacológico , RNA Ribossômico 16S/genética , Pasteurella multocida/efeitos dos fármacos , Actinobacillus pleuropneumoniae/efeitos dos fármacos
2.
Antibiotics (Basel) ; 13(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38667048

RESUMO

Gentamicin, an aminoglycoside antibiotic, is a mixture of therapeutically active C1, C1a, C2 and other minor components. Despite its decades-long use in pigs and other species, its intramuscular (IM) pharmacokinetics/pharmacodynamics (PKs/PDs) are unknown in piglets. Furthermore, the PKs of many drugs differ between healthy and sick animals. Therefore, we investigated the PKs of gentamicin after a single IM dose (10 mg/kg) in healthy piglets and piglets that were intranasally co-infected with Actinobacillus pleuropneumoniae and Pasteurella multocida (PM). The plasma concentrations were measured using validated liquid chromatography/mass spectrometry. The gentamicin exposure was 36% lower based on the area under the plasma concentration-time curve and 16% lower based on the maximum plasma concentration (Cmax) in the infected piglets compared to the healthy piglets, while it was eliminated faster (shorter half-life and larger clearance) in the infected piglets compared to the healthy piglets. The clearance and volume of distribution were the highest for the C1 component. C1, C1a and C2 accounted for 22-25%, 33-37% and 40-42% of the total gentamicin exposure, respectively. The PK/PD target for the efficacy of aminoglycosides (Cmax/minimum inhibitory concentration (MIC) > 10) could be exceeded for PM, with a greater magnitude in the healthy piglets. We suggest integrating this PK information with antibiotic susceptibility data for other bacteria to make informed antibiotic and dosage regimen selections against piglet infections.

3.
Vet Q ; 44(1): 1-18, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38682319

RESUMO

In the present study, we investigated the potential immunomodulatory effects of heat-killed (hLR) and live Limosilactobacillus reuteri PSC102 (LR; formerly Lactobacillus reuteri PSC102) in RAW264.7 macrophage cells and Sprague-Dawley rats. RAW264.7 murine macrophage cells were stimulated with hLR and LR for 24 h. Cyclophosphamide (CTX)-induced immunosuppressed Sprague-Dawley rats were orally administered with three doses of hLR (L-Low, M-Medium, and H-High) and LR for 3 weeks. The phagocytic capacity, production of nitric oxide (NO), and expression of cytokines in RAW264.7 cells were measured, and the different parameters of immunity in rats were determined. hLR and LR treatments promoted phagocytic activity and induced the production of NO and the expression of iNOS, TNF-α, IL-1ß, IL-6, and Cox-2 in macrophage cells. In the in vivo experiment, hLR and LR treatments significantly increased the immune organ indices, alleviated the spleen injury, and ameliorated the number of white blood cells, granulocytes, lymphocytes, and mid-range absolute counts in immunosuppressive rats. hLR and LR increased neutrophil migration and phagocytosis, splenocyte proliferation, and T lymphocyte subsets (CD4+, CD8+, CD45RA+, and CD28+). The levels of immune factors (IL-2, IL-4, IL-6, IL-10, IL-12A, TNF-α, and IFN-γ) in the hLR and LR groups were upregulated compared with those in the CTX-treatment group. hLR and LR treatments could also modulate the gut microbiota composition, thereby increasing the relative abundance of Bacteroidetes and Firmicutes but decreasing the level of Proteobacteria. hLR and LR protected against CTX-induced adverse reactions by modulating the immune response and gut microbiota composition. Therefore, they could be used as potential immunomodulatory agents.


Assuntos
Ciclofosfamida , Microbioma Gastrointestinal , Limosilactobacillus reuteri , Ratos Sprague-Dawley , Animais , Ciclofosfamida/farmacologia , Ratos , Camundongos , Células RAW 264.7 , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos/farmacologia , Probióticos/administração & dosagem , Masculino , Citocinas/metabolismo , Fagocitose/efeitos dos fármacos , Óxido Nítrico/metabolismo , Imunossupressores/farmacologia
4.
Cell Rep ; 43(3): 113813, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38393947

RESUMO

Peptidoglycan recognition protein 1 (PGLYRP1) is a pattern-recognition protein that mediates antibacterial actions and innate immune responses. Its expression and role in neuroinflammatory conditions remain unclear. We observed the upregulation of PGLYRP1 in inflamed human and mouse spinal cord and brain, with microglia being the primary cellular source. Experiments using a recombinant PGLYRP1 protein show that PGLYRP1 potentiates reactive gliosis, neuroinflammation, and consequent behavioral changes in multiple animal models of neuroinflammation. Furthermore, shRNA-mediated knockdown of Pglyrp1 gene expression attenuates this inflammatory response. In addition, we identify triggering receptor expressed on myeloid cell-1 (TREM1) as an interaction partner of PGLYRP1 and demonstrate that PGLYRP1 promotes neuroinflammation through the TREM1-Syk-Erk1/2-Stat3 axis in cultured glial cells. Taken together, our results reveal a role for microglial PGLYRP1 as a neuroinflammation mediator. Finally, we propose that PGLYRP1 is a potential biomarker and therapeutic target in various neuroinflammatory diseases.


Assuntos
Microglia , Doenças Neuroinflamatórias , Animais , Camundongos , Humanos , Microglia/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Imunidade Inata , Inflamação/metabolismo , Citocinas/metabolismo
5.
Viruses ; 15(12)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38140612

RESUMO

Novel swine orthopneumovirus (SOV) infections have been identified in pigs in the USA and some European countries but not in Asian countries, including South Korea, to date. The current study reports the first SOV infections in four domestic pig farms located in four provinces across South Korea. The detection rate of SOV in oral fluid samples using qRT-PCR was 4.4% (14/389), indicating the presence of the virus in pigs at commercial farms in Korea. Two complete genome sequences and one glycoprotein (G) gene sequence were obtained from SOV-positive samples. The complete genome analysis of KSOV-2201 and KSOV-2202 strains showed 98.2 and 95.4% homologies with a previously reported SOV, and the phylogenetic tree exhibited a high correlation with a previously reported SOV strain from the US and a canine pneumovirus (CPnV) strain from China. Based on the genetic analysis of the viral G gene, the murine pneumonia virus (MPV)-like orthopneumoviruses (MLOVs) were divided into two genogroups (G1 and G2). Seventeen CPnVs and two feline pneumoviruses were grouped into G1, while the Korean SOV strains identified in this study were grouped into G2 along with one SOV and two CPnVs. These results will contribute to expanding our understanding of the geographical distribution and genetic characteristics of the novel SOV in the global pig population.


Assuntos
Pneumovirus , Doenças dos Suínos , Camundongos , Suínos , Animais , Gatos , Cães , Sus scrofa , Vírus Sinciciais Respiratórios , Fazendas , Filogenia , Doenças dos Suínos/epidemiologia , República da Coreia/epidemiologia
6.
Antibiotics (Basel) ; 13(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275313

RESUMO

This study aimed to conduct a bioequivalence study of applying three pour-on ivermectin formulations at a dose of 1 mg/kg on the back of Korean native beef cattle (Hanwoo). To conduct bioequivalence testing, the pharmacokinetics of three groups (control Innovator, test Generic A, and test Generic B) of five clinically healthy Korean Hanwoo cattle (average weight 500 kg) were studied. After topical application to the skin, blood samples were drawn at the indicated times. These blood samples were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The time required to reach the maximum concentration (Tmax), the maximum concentration (Cmax), and the area under the curve (AUClast) of each pharmacokinetic parameter were compared for bioequivalence. The results showed that the control had a Tmax of 41 ± 1.24 h, a Cmax of 0.11 ± 0.01 µg/mL, and an AUClast of 9.33 ± 0 h*µg/mL). The comparator Generic A had a Tmax of 40 ± 1.14 h, a Cmax of 0.10 ± 0.01 (µg/mL, and an AUClast of 9.41 ± 0.57 h*µg/mL, while Generic B had a Tmax of 40 ± 2.21 h, a Cmax of 0.10 ± 0.01 µg/mL, and an AUClast of 9 h*µg/mL. The values of the bioequivalence indicators Cmax, Tmax, and AUC were all within the range of 80% to 120%, confirming that all three tested formulations were bioequivalent. In conclusion, the study showed that the two generic products were bioequivalent to the original product in Hanwoo cattle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA