Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Phytomedicine ; 130: 155469, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38824821

RESUMO

BACKGROUND: Baicalein is a flavonoid extracted from the roots of Scutellaria baicalensis G. that has anti-inflammatory and antitumor effects. However, therapeutic mechanisms of baicalein in patients with endometriosis in vivo have yet to be elucidated. As a chronic inflammatory gynecological disease, endometriosis causes pain and infertility, and has no complete treatment to date. Current treatment strategies cause several side effects and have high recurrence rates. PURPOSE: This study aimed to identify the in vivo therapeutic effects of baicalein on endometriosis and verify the action mechanisms of baicalein, focusing on regulating inflammation. METHODS: In this study, an autologous transplant mouse model and patient-derived immortalized human ovarian endometriotic stromal cells (ihOESCs) were used to investigate the therapeutic activities of baicalein. The mouse model was administered with 40 mg/kg baicalein by oral gavage for 4 weeks, and the treatment outcomes of baicalein-treated mice were compared with vehicle- and dienogest-treated groups. ihOESCs were treated with 0-5 µg/ml baicalein for in vitro studies. RESULTS: Baicalein significantly alleviated the progression of endometriosis in mouse models. Baicalein reduced the expression of proinflammatory cytokines in endometriotic lesions and ihOESCs, and cytokine expression and T cell proportions in mouse spleen. in vitro results showed that baicalein increased mitochondrial calcium flux and induced mitochondrial depolarization and ROS generation in ihOESCs. Ultimately, baicalein inactivated the MAPK/PI3K signaling and induced cell death in ihOESCs. CONCLUSION: In conclusion, baicalein effectively attenuated the progression of endometriosis through its anti-inflammatory activities. Baicalein can be an alternative or supplemental treatment for endometriosis to ameliorate the side effects of hormonal therapy.

2.
Sci Total Environ ; 934: 173097, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38729356

RESUMO

Pyrethroid insecticides, such as beta-cyfluthrin, are used extensively globally, including in households and agriculture, and have been detected in the milk and urine of humans and cattle. Beta-cyfluthrin exhibits toxic effects, including neurotoxicity and male reproductive toxicity; however, few studies have investigated female reproductive toxicity despite its wide environmental distribution. The present study investigates effects of beta-cyfluthrin on implantation in porcine cells (pTr from the trophectoderm and pLE from the endometrial luminal epithelium). To identify the various physiological changes induced by beta-cyfluthrin, such as apoptosis and lipid peroxidation, flow cytometry analysis and immunofluorescence were performed with various reagents. In addition, the expression of genes and proteins associated with intracellular changes was confirmed using qRT-PCR and western blotting. Beta-cyfluthrin induced cell-cycle arrest and altered intracellular calcium flux. It also disrupted the mitochondrial function and promoted reactive oxygen species (ROS) production, leading to lipid peroxidation. Moreover, ROS induced by beta-cyfluthrin altered mitogen-activated protein kinase (MAPK) pathways and decreased cell migration capability. The expression levels of genes that are significant during early pregnancy were altered by beta-cyfluthrin in both cell lines. The changes resulted in apoptosis and diminished cell proliferation of pTr and pLE. Collectively, the results imply that beta-cyfluthrin disrupts the implantation process by affecting the physiology of the trophectoderm and endometrial luminal epithelial cells. The present study is the first to reveal the cellular mechanisms of beta-cyfluthrin on the female reproductive system and highlights the need for further in-depth research into its hazards.


Assuntos
Células Epiteliais , Inseticidas , Mitocôndrias , Nitrilas , Piretrinas , Espécies Reativas de Oxigênio , Transdução de Sinais , Animais , Espécies Reativas de Oxigênio/metabolismo , Feminino , Piretrinas/toxicidade , Nitrilas/toxicidade , Suínos , Inseticidas/toxicidade , Células Epiteliais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Implantação do Embrião/efeitos dos fármacos , Útero/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos
3.
J Cosmet Dermatol ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558364

RESUMO

BACKGROUND: Micronized acellular dermal matrix (mADM) can induce tissue regeneration and repair, and filling. OBJECTIVES: The efficacy and safety of (mADM) were evaluated in the treatment of atrophic acne scar. METHODS: In this single-blinded, self-controlled, split-face study, 16 patients (48 scar sites) were divided into treatment group (24 scar sites) and control group (24 scar sites). One side of the affected area was treated with mADM combined with platelet rich plasma (PRP) injection as the treatment group; the other side of the affected area was treated with PRP injection as the control group. The efficacy was evaluated by the Acne scar assessment scale (ASAS) and Acne Scar Weight Rating Scale (ECCA) 3 months after treatment. RESULTS: After 3-month treatment in 16 patients, the atrophic acne scars in both groups were all improved. The ASAS score and ECCA weight score in the treatment group was significantly lower than that in the control group (2.50 ± 0.51 vs. 3.62 ± 0.77 and 14.17 ± 10.18 vs. 31.88 ± 13.25; p < 0.001). LIMITATIONS: Short-term 3-month treatment period. Small sample size limits generalizability of results. CONCLUSION: The curative effect of mADM combined with PRP is significantly better than that of PRP alone.

4.
Materials (Basel) ; 17(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38673244

RESUMO

Two blue-emitting materials, 4-(12-([1,1':3',1″-terphenyl]-5'-yl)chrysen-6-yl)-N,N-diphenylaniline (TPA-C-TP) and 6-([1,1':3',1″-terphenyl]-5'-yl)-12-(4-(1,2,2-triphenylvinyl)phenyl)chrysene (TPE-C-TP), were prepared with the composition of a chrysene core moiety and terphenyl (TP), triphenyl amine (TPA), and tetraphenylethylene (TPE) moieties as side groups. The maximum photoluminescence (PL) emission wavelengths of TPA-C-TP and TPE-C-TP were 435 and 369 nm in the solution state and 444 and 471 nm in the film state. TPA-C-TP effectively prevented intermolecular packing through the introduction of TPA, a bulky aromatic amine group, and it showed an excellent photoluminescence quantum yield (PLQY) of 86% in the film state. TPE-C-TP exhibited aggregation-induced emission; the PLQY increased dramatically from 0.1% to 78% from the solution state to the film state. The two synthesized materials had excellent thermal stability, with a high decomposition temperature exceeding 460 °C. The two compounds were used as emitting layers in a non-doped device. The TPA-C-TP device achieved excellent electroluminescence (EL) performance, with Commission Internationale de L'Eclairage co-ordinates of (0.15, 0.07) and an external quantum efficiency of 4.13%, corresponding to an EL peak wavelength of 439 nm.

5.
Mol Cells ; 47(5): 100065, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38679414

RESUMO

Environmental pollutants, including endocrine disruptors, heavy metals, nanomaterials, and pesticides, have been detected in various ecosystems and are of growing global concern. The potential for toxicity to non-target organisms has consistently been raised and is being studied using various animal models. In this review, we focus on pesticides frequently detected in the environment and investigate their potential exposure to livestock. Owing to the reproductive similarities between humans and pigs, various in vitro porcine models, such as porcine oocytes, trophectoderm cells, and luminal epithelial cells, are used to verify reproductive toxicity. These cell lines are being used to study the toxic mechanisms induced by various environmental toxicants, including organophosphate insecticides, pyrethroid insecticides, dinitroaniline herbicides, and diphenyl ether herbicides, which persist in the environment and threaten livestock health. Collectively, these results indicate that these pesticides can induce female reproductive toxicity in pigs and suggest the possibility of adverse effects on other livestock species. These results also indicate possible reproductive toxicity in humans, which requires further investigation.


Assuntos
Poluentes Ambientais , Reprodução , Animais , Feminino , Suínos , Poluentes Ambientais/toxicidade , Reprodução/efeitos dos fármacos , Praguicidas/toxicidade , Humanos
6.
Food Chem Toxicol ; 186: 114559, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432436

RESUMO

Norflurazon, an inhibitor of carotenoid synthesis, is a pre-emergent herbicide that prevents growth of weeds. The norflurazon is known to hamper embryo development in non-mammals. However, specific toxic effects of norflurazon on mammalian maternal and fetal cells have not been elucidated. Thus, the hypothesis of this study is that norflurazon may influence the toxic effects between maternal and fetal cells during early pregnancy in pigs. We aimed to examine the toxic effects of norflurazon in porcine trophectoderm (Tr) and uterine luminal epithelium (LE) cells. Norflurazon, administered at 0, 20, 50 or 100 µM for 48 h was used to determine its effects on cell proliferation and cell-cycle arrest. For both uterine LE and Tr cell lines, norflurazone caused mitochondrial dysfunction by inhibiting mitochondrial respiration and ATP production, and down-regulated expression of mRNAs of mitochondrial complex genes. Norflurazon increased cell death by increasing intracellular calcium and regulating PI3K and MAPK cell signaling pathways, as well as endoplasmic reticulum (ER) stress, ER-mitochondrial contact, and autophagy-related target proteins. Norflurazone also inhibited expression of genes required for implantation of blastocysts, including SMAD2, SMAD4, and SPP1. These findings indicate that norflurazon may induce implantation failure in pigs and other mammals through adverse effects on both Tr and uterine LE cells.


Assuntos
Implantação do Embrião , Piridazinas , Útero , Gravidez , Feminino , Suínos , Animais , Útero/metabolismo , Morte Celular , Células Epiteliais , Endométrio/metabolismo , Mamíferos
7.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474616

RESUMO

A novel quinophthalone derivative, 4,5,6,7-tetrachloro-2-(2-(3-hydroxy-1-oxo-1H-cyclopenta[b]naphthalen-2-yl)quinolin-4-yl)isoindoline-1,3-dione (TCHCQ), was designed and synthesized as a yellow colorant additive for green color filters in image sensors. The characteristics of the new material were evaluated in terms of optical, thermal, and chemical properties under solution and color filter film conditions. TCHCQ exhibited a significantly enhanced molar extinction coefficient in solution, being 1.21 times higher than that of the commercially used yellow colorant Y138. It also demonstrated excellent thermal stability, with a decomposition temperature (Td) exceeding 450 °C. Utilizing the nano-pigmentation process, TCHCQ was used to prepare nano-sized particles with an excellent average size of 35 nm. This enabled the fabrication of a color filter film with outstanding properties. The optical properties of the produced film revealed outstanding yellow colorant transmittance of 0.97% at 435 nm and 91.2% at 530 nm. The color filter film exhibited similar optical and thermal stability to Y138, with an improved chemical stability, as evidenced by a ΔEab value of 0.52. The newly synthesized TCHCQ is considered a promising candidate for use as a yellow colorant additive in image sensor color filters, demonstrating superior optical, thermal, and chemical stability.

8.
RSC Adv ; 14(12): 8135-8144, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38464691

RESUMO

Three new blue materials, TPI-InCz, PAI-InCz, and CN-PAI-InCz, have been developed. In the film state, TPI-InCz and PAI-InCz exhibited emission peaks at 411 and 431 nm indicating deep blue emission. CN-PAI-InCz showed a peak emission at 452 nm, within the real blue region. When these three materials were used as the emissive layer to fabricate non-doped devices, CN-PAI-InCz showed the highest current efficiency of 2.91 cd A-1, power efficiency of 1.93 lm W-1, and external quantum efficiency of 3.31%. Among the synthesized materials, CN-PAI-InCz exhibited superior charge balance due to the introduction of CN groups, as confirmed by hole-only devices and electron-only devices. PAI-InCz demonstrated fast hole mobility with a value of 1.50 × 10-3 cm2 V-1 s-1, attributed to its planar and highly rigid structure. In the resulting devices, the Commission Internationale de l'Eclairage coordinates for TPI-InCz, PAI-InCz, and CN-PAI-InCz were (0.162, 0.048), (0.0161, 0.067), and (0.155, 0.099), all indicating emission in the blue region.

9.
Reprod Sci ; 31(2): 404-412, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38180609

RESUMO

This study is aimed at identifying variations in the effect of endometriosis on fecundity in a mouse model based on prior pregnancy experience. Endometriosis is one of the most prevalent gynecological diseases and is known to impact female fecundity adversely. In this study, an endometriosis mouse model was established by allografting uterine horn tissue using Pelch's method. The effect of endometriosis on fecundity was confirmed in primiparous and multiparous female mice. As fecundity indicators, the pregnancy rate, number of litters, pregnancy period, and survival rate of the pups were investigated. As a result of the experiment, the pregnancy rate decreased, and the pregnancy period tended to be shorter in primiparous female mice. However, there was no significant change in the multiparous mice. In addition, it has been established that correlations exist between the size of lesions and certain fecundity indicators of the lesion, even among primiparous and multiparous females with endometriosis. The study attempted to demonstrate a link between pregnancy experience and fecundity changes caused by endometriosis by experimentally reproducing clinical results using mouse models. These results suggest strategies for identifying several pathophysiological characteristics of endometriosis.


Assuntos
Endometriose , Infertilidade Feminina , Gravidez , Humanos , Feminino , Camundongos , Animais , Endometriose/patologia , Fertilidade/fisiologia , Infertilidade Feminina/etiologia , Taxa de Gravidez , Paridade , Modelos Animais de Doenças
10.
ACS Sens ; 9(2): 699-707, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38294962

RESUMO

The surface-enhanced Raman scattering (SERS) technique has garnered significant interest due to its ultrahigh sensitivity, making it suitable for addressing the growing demand for disease diagnosis. In addition to its sensitivity and uniformity, an ideal SERS platform should possess characteristics such as simplicity in manufacturing and low analyte consumption, enabling practical applications in complex diagnoses including cancer. Furthermore, the integration of machine learning algorithms with SERS can enhance the practical usability of sensing devices by effectively classifying the subtle vibrational fingerprints produced by molecules such as those found in human blood. In this study, we demonstrate an approach for early detection of breast cancer using a bottom-up strategy to construct a flexible and simple three-dimensional (3D) plasmonic cluster SERS platform integrated with a deep learning algorithm. With these advantages of the 3D plasmonic cluster, we demonstrate that the 3D plasmonic cluster (3D-PC) exhibits a significantly enhanced Raman intensity through detection limit down to 10-6 M (femtomole-(10-17 mol)) for p-nitrophenol (PNP) molecules. Afterward, the plasma of cancer subjects and healthy subjects was used to fabricate the bioink to build 3D-PC structures. The collected SERS successfully classified into two clusters of cancer subjects and healthy subjects with high accuracy of up to 93%. These results highlight the potential of the 3D plasmonic cluster SERS platform for early breast cancer detection and open promising avenues for future research in this field.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Análise Espectral Raman/métodos
11.
Phytomedicine ; 123: 155187, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984125

RESUMO

BACKGROUND: Fraxetin, a phytochemical obtained from Fraxinus rhynchophylla, is well known for its anti-inflammatory and anti-fibrotic properties. However, fraxetin regulates the progression of endometriosis, which is a benign reproductive disease that results in low quality of life and infertility. HYPOTHESIS/PURPOSE: We hypothesized that fraxetin may have therapeutic effects on endometriosis and aimed to elucidate the underlying mechanisms of mitochondrial function and tiRNA regulation. STUDY DESIGN: Endometriotic animal models and cells (End1/E6E7 and VK2/E6E7) were used to identify the mode of action of fraxetin. METHODS: An auto-implanted endometriosis animal model was established and the effects of fraxetin on lesion size reduction were analyzed. Cell-based assays including proliferation, cell cycle, migration, apoptosis, mitochondrial function, calcium efflux, and reactive oxygen species (ROS) were performed. Moreover, fraxetin signal transduction was demonstrated by western blotting and qPCR analyses. RESULTS: Fraxetin inhibited proliferation and migration by inactivating the P38/JNK/ERK mitogen-activated protein kinase (MAPK) and AKT/S6 pathways. Fraxetin dissipates mitochondrial membrane potential, downregulates oxidative phosphorylation (OXPHOS), and disrupts redox and calcium homeostasis. Moreover, it triggered endoplasmic reticulum stress and intrinsic apoptosis. Furthermore, we elucidated the functional role of tiRNAHisGTG in endometriosis by transfection with its inhibitor. Finally, we established an endometriosis mouse model and verified endometriotic lesion regression and downregulation of adhesion molecules with inflammation. CONCLUSION: This study suggests that fraxetin is a novel therapeutic agent that targets mitochondria and tiRNAs. This is the first study to demonstrate the mechanisms of tiRNAHisGTG with mitochondrial function and cell fates and can be applied as a non-hormonal method against the progression of endometriosis.


Assuntos
Cumarínicos , Endometriose , Humanos , Feminino , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Endometriose/metabolismo , Cálcio/metabolismo , Qualidade de Vida , Proliferação de Células , Linhagem Celular , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Mitocôndrias , Apoptose
12.
Tissue Eng Regen Med ; 21(2): 319-328, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38103140

RESUMO

BACKGROUND: Recent anti-cancer agents, immune checkpoint inhibitors (ICIs), have emerged as effective agents targeting the programmed cell death protein-1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway. While the administration of gonadotropin-releasing hormone (GnRH) analogs before cytotoxic agents is known to preserve female reproductive organ function, the potential effects of ICIs and the protective impact of GnRH analogs on female reproductive organs, especially concerning ovarian reserve and endometrial receptivity, remain unknown. In this study, we attempted to elucidate the protective or regenerative effect on the female reproductive organ of cetrorelix prior to anti-PD-L1 antibody administration. METHOD: Using a murine model, we examined the effects of Anti-PD-L1 antibody treatment on ovarian and uterine morphology, compared them with controls, and further assessed any potential protective effect of cetrorelix, a GnRH analog. Histological examinations and quantitative reverse transcription polymerase chain reaction were employed to study the morphological changes and associated gene expression patterns. RESULTS: Anti-PD-L1 treatment led to a significant depletion of primordial/primary ovarian follicles and impaired decidualization in uterine stromal cells. However, while pretreatment with cetrorelix could restore normal decidualization patterns in the uterus, it did not significantly ameliorate ovarian follicular reductions. Gene expression analysis reflected these observations, particularly with marked changes in the expression of key genes like Prl and Igfbp1, pivotal in uterine decidualization. CONCLUSION: Our study underscores the potential reproductive implications of cetrorelix treatment prior to Anti-PD-L1 therapy, shedding light on its short-term protective effects on the uterus. Further studies are necessary to understand long-term and clinical implications.


Assuntos
Antígeno B7-H1 , Ovário , Camundongos , Feminino , Animais , Ovário/metabolismo , Antígeno B7-H1/metabolismo , Modelos Animais de Doenças , Hormônio Liberador de Gonadotropina/farmacologia , Endométrio
13.
Pestic Biochem Physiol ; 196: 105628, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945262

RESUMO

Bifenox is a widely used herbicide that contains a diphenyl ether group. However its global usage, the cell physiological effects that induce toxicity have not been elucidated. In this study, the effect of bifenox was examined in porcine trophectoderm and uterine epithelial cells to investigate the potential toxicity of the implantation process. To uncover the toxic effects of bifenox, cell viability and apoptosis following treatment with bifenox were evaluated. To investigate the underlying cellular mechanisms, mitochondrial and calcium homeostasis were investigated in both cell lines. In addition, the dysregulation of cell signal transduction and transcriptional alterations were also demonstrated. Bifenox reduced cell viability and significantly increased the number of cells arrested at the sub-G1 stage. Moreover, bifenox depolarized the mitochondrial membrane and upregulated the calcium flux into the mitochondria in both cell lines. Cytosolic calcium flux increased in porcine trophectoderm (pTr) cells and decreased in porcine luminal epithelium (pLE) cells. In addition, bifenox activated the mitogen-activated protein kinase and phosphoinositide 3-kinase signaling pathways. Furthermore, bifenox inhibited the expression of retinoid receptor genes, such as RXRA, RXRB, and RXRG. Chemokine CCL8 was also downregulated at the mRNA level, whereas CCL5 expression remained unchanged. Overall, the results of this study suggest that bifenox deteriorates cell viability by arresting cell cycle progression, damaging mitochondria, and controlling calcium levels in pTr and pLE cells. The present study indicates the toxic potential of bifenox in the trophectoderm and luminal epithelial cells, which can lead to implantation disorders in early pregnancy.


Assuntos
Cálcio , Fosfatidilinositol 3-Quinases , Gravidez , Feminino , Suínos , Animais , Cálcio/metabolismo , Proliferação de Células , Éteres Fenílicos/metabolismo , Éteres Fenílicos/farmacologia , Mitocôndrias/metabolismo , Células Epiteliais , Ciclo Celular , Homeostase
14.
Antioxidants (Basel) ; 12(7)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37507864

RESUMO

Alpinumisoflavone is an isoflavonoid extracted from the Cudrania tricuspidate fruit and Genista pichisermolliana. It has various physiological functions, such as anti-inflammation, anti-proliferation, and apoptosis, in malignant tumors. However, the effect of alpinumisoflavone is still not known in chronic diseases and other benign reproductive diseases, such as endometriosis. In this study, we examined the cell death effects of alpinumisoflavone on the endometriosis cell lines, End1/E6E7 and VK2/E6E7. Results indicated that alpinumisoflavone inhibited cell migration and proliferation and led to cell cycle arrest, depolarization of mitochondria membrane potential, apoptosis, and disruption of calcium homeostasis in the endometriosis cell lines. However, the cellular proliferation of normal uterine epithelial cells was not changed by alpinumisoflavone. The alteration in Ca2+ levels was estimated in fluo-4 AM-stained End1/E6E7 and VK2/E6E7 cells after alpinumisoflavone treatment with or without calcium inhibitor, 2-aminoethoxydiphenyl borate (2-APB). The results indicated that a combination of alpinumisoflavone and a calcium inhibitor reduced the calcium accumulation in the cytosol of endometriosis cells. Additionally, alpinumisoflavone decreased oxidative phosphorylation (OXPHOS) in the endometriotic cells. Moreover, protein expression analysis revealed that alpinumisoflavone inactivated AKT signaling pathways, whereas it increased MAPK, ER stress, and autophagy regulatory proteins in End1/E6E7 and VK2/E6E7 cell lines. In summary, our results suggested that alpinumisoflavone could be a promising effective management agent or an adjuvant therapy for benign disease endometriosis.

15.
Reprod Sci ; 30(9): 2703-2714, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37067725

RESUMO

Endometriosis is an estrogen-dependent inflammatory disease characterized by the growth of endometrial-like tissues containing endometrial stromal cells and glandular epithelium outside the uterine cavity. An insufficient response to progesterone contributes to disease progression and systemic inflammation during the pathogenesis of endometriosis. Patients with endometriosis usually experience painful symptoms, dysmenorrhea, and infertility, which contribute to a significant reduction in their quality of life. To determine the possible molecular mechanisms of endometriosis and explore novel therapeutic targets, we derived primary human ovarian endometriotic stromal cells (hOESCs) from a patient of reproductive age with ovarian endometriosis. In this study, we successfully established immortalized human ovarian endometriotic stromal cell lines (ihOESCs) using primary stromal cells obtained from endometriotic lesions to overcome short lifespan and growth inhibition. Immortalization of hOESCs with human telomerase reverse transcriptase (hTERT) transfection led to cells that maintained a proliferative state under passage culture conditions without mutagenesis during cellular senescence. The morphology and karyotype of ihOESCs were unchanged compared with those of hOESCs. Moreover, ihOESCs were continuously positive for vimentin and negative for E-cadherin expression. Following decidual stimuli and inflammatory responses, both hOESCs and ihOESCs sensitively express decidualization markers and proinflammatory cytokines. Collectively, we characterized ihOESCs to maintain their phenotypic and functional properties with a longer lifespan and normal physiological responses than those of hOESCs. These immortalized cells could aid in a detailed understanding of the pathological mechanisms of endometriosis.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/metabolismo , Qualidade de Vida , Endométrio/metabolismo , Linhagem Celular , Células Estromais/metabolismo
16.
Theriogenology ; 201: 12-23, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36809717

RESUMO

The global use of herbicides accounts for more than 48% of total pesticide usage. Picolinafen is a pyridine carboxylic acid herbicide that is predominantly used to control broadleaf weeds in wheat, barley, corn, and soybeans. Despite its widespread use in agriculture, its toxicity in mammals has rarely been studied. In this study, we first identified the cytotoxic effects of picolinafen on porcine trophectoderm (pTr) and luminal epithelial (pLE) cells, which are involved in the implantation process during early pregnancy. Picolinafen treatment significantly decreased the viability of pTr and pLE cells. Our results demonstrate that picolinafen increased the number of sub-G1 phase cells and early/late apoptosis. In addition, picolinafen disrupted mitochondrial function and resulted in the accumulation of intracellular ROS, leading to a reduction in calcium levels in both the mitochondria and cytoplasm of pTr and pLE cells. Moreover, picolinafen was found to significantly inhibit the migration of pTr. These responses were accompanied by the activation of the MAPK and PI3K signal transduction pathways by picolinafen. Our data suggest that the deleterious effects of picolinafen on the viability and migration of pTr and pLE cells might impair their implantation potential.


Assuntos
Cálcio , Implantação do Embrião , Gravidez , Feminino , Suínos , Animais , Cálcio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Células Epiteliais/metabolismo , Proliferação de Células , Mamíferos
17.
Sci Total Environ ; 867: 161535, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638995

RESUMO

Fluridone is a systemic herbicide used to control a range of invasive aquatic plants in irrigation systems, lake, and reservoirs. Since aquatic herbicides are more likely to have a hazardous impact on ecosystems than terrestrially applied herbicides, a risk assessment is needed to determine whether to expand or limit their use. The aim of this study was to investigate the developmental toxicity of fluridone using zebrafish. Diverse toxicological results were observed for the sub-lethal endpoints, including lack of hatching, reduced heartbeat and disturbed blood circulation through dysmorphic heart, and edema formation. Abnormal apoptosis was observed in the brain and yolk sac of fluridone-exposed larvae. A computational analysis was used to predict chemical properties in non-target organisms and revealed that fluridone was highly relevant in the cardiovascular system. Double transgenic zebrafish (fli1a:EGFP;cmlc2:dsRed) were used to evaluate the effects of fluridone on the cardiovascular system during embryonic development. Ectopic growth of sub-intestinal vessels and sprouting angiogenesis in the hindbrain region were highly inhibited. Additionally, essential genes involved in the VEGF signaling and heart development were differentially expressed in dose-dependent manner. Collectively, our toxicological findings in fluridone exposure highlight defects in the cardiovascular development causing embryonic lethality that could damage aquatic communities and natural ecosystems.


Assuntos
Sistema Cardiovascular , Herbicidas , Poluentes Químicos da Água , Animais , Peixe-Zebra , Herbicidas/toxicidade , Ecossistema , Embrião não Mamífero , Poluentes Químicos da Água/toxicidade , Larva
18.
J Pineal Res ; 74(1): e12842, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36401340

RESUMO

Endometriosis is a benign gynecological disease characterized by abnormal growth of endometrial-like cells outside the uterus. Melatonin, a hormone secreted by the pineal gland, has been shown to have therapeutic effects in various diseases, including endometriosis. However, the underlying molecular mechanisms are yet to be elucidated. The results of this study demonstrated that melatonin and dienogest administration effectively reduced surgically induced endometriotic lesions in a mouse model. Melatonin suppressed proliferation, induced apoptosis, and dysregulated calcium homeostasis in endometriotic cells and primary endometriotic stromal cells. Melatonin also caused mitochondrial dysfunction by permeating through the mitochondrial membrane to disrupt redox homeostasis in the endometriotic epithelial and stromal cells. Furthermore, melatonin affected oxidative phosphorylation systems to decrease ATP production in End1/E6E7 and VK2/E6E7 cells. This was achieved through messenger RNA-mediated downregulation of respiratory complex subunits. Melatonin inhibited the PI3K/AKT and ERK1/2 pathways and the mitochondria-associated membrane axis and further suppressed the migration of endometriotic epithelial and stromal cells. Furthermore, we demonstrated that tiRNAGluCTC and tiRNAAspGTC were associated with the proliferation of endometriosis and that melatonin suppressed the expression of these tiRNAs in primary endometriotic stromal cells and lesions in a mouse model. Thus, melatonin can be used as a novel therapeutic agent to manage endometriosis.


Assuntos
Endometriose , Melatonina , Animais , Feminino , Camundongos , Proliferação de Células , Endometriose/tratamento farmacológico , Endometriose/metabolismo , Endometriose/patologia , Endométrio/metabolismo , Endométrio/patologia , Melatonina/metabolismo , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
19.
Pestic Biochem Physiol ; 188: 105288, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464341

RESUMO

Aclonifen is a diphenyl-ether herbicide that is used to control the growth of weeds while growing crops such as corn and wheat. Although the biochemical effects of aclonifen are well characterized, including its ability to inhibit protoporphyrinogen oxidase and carotenoid synthesis, the toxicity of aclonifen in embryonic implantation and development during early pregnancy, has not been reported. Thus, in this study, we investigated the potential interference of aclonifen in embryonic implantation using porcine trophectoderm (pTr) and uterine luminal epithelial (pLE) cells isolated during implantation period of early pregnancy. Cell viability in both pTr and pLE cells significantly decreased in a dose-dependent manner following aclonifen treatment. Moreover, the proportion of cells in the sub-G1 phase of the cell cycle gradually increased upon treatment with increasing concentrations of aclonifen, which in turn led to an increase in the number of apoptotic cells, as determined by annexin V and propidium iodide staining. Aclonifen treatment caused mitochondrial dysfunction by increasing the depolarization of the mitochondrial membrane potential and the mitochondrial calcium concentration. Aclonifen inhibited cell mobility by suppressing the expression of implantation-related genes in pTr and pLE cells. To explore the underlying mechanism, we evaluated the phosphorylation of PI3K and MAPK signaling molecules. The phosphorylation of AKT, S6, JNK, and ERK1/2 were significantly increased by aclonifen. Collectively, our results suggest that aclonifen may interrupt implantation during early pregnancy by disrupting maternal-fetal interaction.


Assuntos
Desenvolvimento Embrionário , Células Epiteliais , Feminino , Gravidez , Suínos , Animais , Útero , Apoptose
20.
Antioxidants (Basel) ; 11(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36358529

RESUMO

Some colorectal cancer (CRC) patients are resistant to 5-fluorouracil (5-FU), and high expression levels of thymidylate synthase (TS) contribute to this resistance. This study investigated whether quercetin, a representative polyphenol compound, could enhance the effect of 5-FU in CRC cells. Quercetin suppressed TS levels that were increased by 5-FU in CRC cells and promoted the expression of p53. Quercetin also induced intracellular and mitochondrial reactive oxygen species (ROS) production and Ca2+ dysregulation in a 5-FU-independent pathway in CRC cells. Furthermore, quercetin decreased mitochondrial membrane potential in CRC cells and inhibited mitochondrial respiration. Moreover, quercetin regulated the expression of specific tiRNAs, including tiRNAHisGTG, and transfection of a tiRNAHisGTG mimic further enhanced the apoptotic effect of quercetin in CRC cells. An enhanced sensitivity to 5-FU was also confirmed in colitis-associated CRC mice treated with quercetin. The treatment of quercetin decreased survival rates of the CRC mouse model, with reductions in the number of tumors and in the disease activity index. Also, quercetin suppressed TS and PCNA protein expression in the distal colon tissue of CRC mice. These results suggest that quercetin has the potential to be used as an adjuvant with 5-FU for the treatment of CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA