Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 21(1): 922, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115032

RESUMO

BACKGROUND: Pain is a worldwide problem requiring an effective, affordable, non-addictive therapy. Using the edible plant broccoli, a growth protocol was developed to induce a concentrated combinatorial of potential anti-inflammatories in seedlings. METHODS: A growth method was utilized to produce a phenylpropanoid-rich broccoli sprout extract, referred to as Original Extract (OE). OE was concentrated and then resuspended for study of the effects on inflammation events. A rabbit disc model of inflammation and degeneration, and, a mouse model of pain behavior were used for in vivo and in vitro tests. To address aspects of mammalian metabolic processing, the OE was treated with the S9 liver microsome fraction derived from mouse, for use in a mouse in vivo study. Analytical chemistry was performed to identify major chemical species. Continuous variables were analyzed with a number of methods including ANOVA, and two-tailed t tests, as appropriate. RESULTS: In a rabbit spine (disc) injury model, inflammatory markers were reduced, and levels of regenerative markers were increased as a result of OE treatment, both in vivo and in vitro. In a mouse pain behavioral model, after treatment with S9 liver microsome fraction, the resultant extract significantly reduced early and late pain behavior in response to a pain stimulus. The OE itself reduced pain behavior in the mouse pain model, but did not achieve the level of significance observed for S9-treated extract. Analytical chemistry undertaken on the extract constituents revealed identities of the chemical species in OE, and how S9 liver microsome fraction treatment altered species identities and proportions. CONCLUSIONS: In vitro and in vivo results indicate that the OE, and S9-treated OE broccoli extracts are worthwhile materials to develop a non-opiate inflammation and pain-reducing treatment.


Assuntos
Brassica , Camundongos , Animais , Coelhos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Plântula , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , Mamíferos
3.
Genome Res ; 33(9): 1513-1526, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37625847

RESUMO

Changes in gene regulation are thought to underlie most phenotypic differences between species. For subterranean rodents such as the naked mole-rat, proposed phenotypic adaptations include hypoxia tolerance, metabolic changes, and cancer resistance. However, it is largely unknown what regulatory changes may associate with these phenotypic traits, and whether these are unique to the naked mole-rat, the mole-rat clade, or are also present in other mammals. Here, we investigate regulatory evolution in the heart and liver from two African mole-rat species and two rodent outgroups using genome-wide epigenomic profiling. First, we adapted and applied a phylogenetic modeling approach to quantitatively compare epigenomic signals at orthologous regulatory elements and identified thousands of promoter and enhancer regions with differential epigenomic activity in mole-rats. These elements associate with known mole-rat adaptations in metabolic and functional pathways and suggest candidate genetic loci that may underlie mole-rat innovations. Second, we evaluated ancestral and species-specific regulatory changes in the study phylogeny and report several candidate pathways experiencing stepwise remodeling during the evolution of mole-rats, such as the insulin and hypoxia response pathways. Third, we report nonorthologous regulatory elements overlap with lineage-specific repetitive elements and appear to modify metabolic pathways by rewiring of HNF4 and RAR/RXR transcription factor binding sites in mole-rats. These comparative analyses reveal how mole-rat regulatory evolution informs previously reported phenotypic adaptations. Moreover, the phylogenetic modeling framework we propose here improves upon the state of the art by addressing known limitations of inter-species comparisons of epigenomic profiles and has broad implications in the field of comparative functional genomics.


Assuntos
Genômica , Sequências Reguladoras de Ácido Nucleico , Animais , Filogenia , Sequências Reguladoras de Ácido Nucleico/genética , Ratos-Toupeira/genética , Hipóxia
4.
Animals (Basel) ; 13(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36899677

RESUMO

Naked mole-rats (Heterocephalus glaber) are very unusual among subterranean mammals in that they live in large colonies and are extremely social, spending large amounts of time gathered together in underground nests more than a meter below the surface. Many respiring individuals resting in deep, poorly ventilated nests deplete the oxygen supply and increase the concentration of carbon dioxide. Consistent with living in that atmosphere, naked mole-rats tolerate levels of low oxygen and high carbon dioxide that are deadly to most surface-dwelling mammals. Naked mole-rats appear to have evolved a number of remarkable adaptations to be able to thrive in this harsh atmosphere. In order to successfully survive low oxygen atmospheres, they conserve energy utilization by reducing the physiological activity of all organs, manifest by reduced heart rate and brain activity. Amazingly, they resort to the anaerobic metabolism of fructose rather than glucose as a fuel to generate energy when challenged by anoxia. Similarly, high carbon dioxide atmospheres normally cause tissue acidosis, while naked mole-rats have a genetic mutation preventing both acid-induced pain and pulmonary edema. Together, these putative adaptations and the tolerances they provide make the naked mole-rat an important model for studying a host of biomedical challenges.

5.
J Muscle Res Cell Motil ; 44(2): 61-72, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35854159

RESUMO

Challenging environmental conditions can drive the evolution of extreme physiological traits. The naked mole-rat has evolved to survive and thrive in a low oxygen, high carbon dioxide environment that would be deadly to humans and most other mammals. The naked mole-rat's lifestyle is unusual in that this species combines subterranean living and living in large, social groups of up to 300 + individuals. Many respiring animals in a closed environment can lead to depletion of oxygen (hypoxia) and accumulation of carbon dioxide (hypercapnia). Naked mole-rats display a variety of physiological traits that negate the adverse effects of living in this atmosphere. For hypoxia tolerance, naked mole-rats have a low resting metabolism, high affinity hemoglobin, intrinsic brain tolerance, the ability to use fructose for anaerobic glycolysis, and the ability to enter a low energy, suspended animation-like state. For hypercapnia tolerance, these animals have a mutation in a voltage gated sodium channel that effectively eliminates neuronal responses to tissue acidosis. In other mammals, acidosis from exposure to high concentrations of carbon dioxide induces pain and pulmonary edema. Understanding these mechanisms of extreme physiology is not only inherently interesting, but it may lead to biomedical breakthroughs in research on heart attacks, strokes, and pain pathologies.


Assuntos
Dióxido de Carbono , Hipercapnia , Humanos , Animais , Dióxido de Carbono/metabolismo , Hipóxia , Oxigênio/metabolismo , Ratos-Toupeira/metabolismo , Mamíferos/metabolismo
6.
J Physiol ; 601(3): 607-629, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36321247

RESUMO

In stroke, the sudden deprivation of oxygen to neurons triggers a profuse release of glutamate that induces anoxic depolarization (AD) and leads to rapid cell death. Importantly, the latency of the glutamate-driven AD event largely dictates subsequent tissue damage. Although the contribution of synaptic glutamate during ischaemia is well-studied, the role of tonic (ambient) glutamate has received far less scrutiny. The majority of tonic, non-synaptic glutamate in the brain is governed by the cystine/glutamate antiporter, system xc - . Employing hippocampal slice electrophysiology, we showed that transgenic mice lacking a functional system xc - display longer latencies to AD and altered depolarizing waves compared to wild-type mice after total oxygen deprivation. Experiments which pharmacologically inhibited system xc - , as well as those manipulating tonic glutamate levels and those antagonizing glutamate receptors, revealed that the antiporter's putative effect on ambient glutamate precipitates the ischaemic cascade. As such, the current study yields novel insight into the pathogenesis of acute stroke and may direct future therapeutic interventions. KEY POINTS: Ischaemic stroke remains the leading cause of adult disability in the world, but efforts to reduce stroke severity have been plagued by failed translational attempts to mitigate glutamate excitotoxicity. Elucidating the ischaemic cascade, which within minutes leads to irreversible tissue damage induced by anoxic depolarization, must be a principal focus. Data presented here show that tonic, extrasynaptic glutamate supplied by system xc - synergizes with ischaemia-induced synaptic glutamate release to propagate AD and exacerbate depolarizing waves. Exploiting the role of system xc - and its obligate release of ambient glutamate could, therefore, be a novel therapeutic direction to attenuate the deleterious effects of acute stroke.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Camundongos , Animais , Ácido Glutâmico/metabolismo , Antiporters/metabolismo , Isquemia , Camundongos Transgênicos , Hipóxia , Hipocampo/metabolismo , Oxigênio/metabolismo
7.
Proc Biol Sci ; 289(1980): 20220878, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35946148

RESUMO

Life underground often leads to animals having specialized auditory systems to accommodate the constraints of acoustic transmission in tunnels. Despite living underground, naked mole-rats use a highly vocal communication system, implying that they rely on central auditory processing. However, little is known about these animals' central auditory system, and whether it follows a similar developmental time course as other rodents. Naked mole-rats show slowed development in the hippocampus suggesting they have altered brain development compared to other rodents. Here, we measured morphological characteristics and voltage-gated potassium channel Kv3.3 expression and protein levels at different key developmental time points (postnatal days 9, 14, 21 and adulthood) to determine whether the auditory brainstem (lateral superior olive and medial nucleus of the trapezoid body) develops similarly to two common auditory rodent model species: gerbils and mice. Additionally, we measured the hearing onset of naked mole-rats using auditory brainstem response recordings at the same developmental timepoints. In contrast with other work in naked mole-rats showing that they are highly divergent in many aspects of their physiology, we show that naked mole-rats have a similar hearing onset, between postnatal day (P) 9 and P14, to many other rodents. On the other hand, we show some developmental differences, such as a unique morphology and Kv3.3 protein levels in the brainstem.


Assuntos
Tronco Encefálico , Ratos-Toupeira , Animais , Percepção Auditiva/fisiologia , Tronco Encefálico/anatomia & histologia , Gerbillinae , Hipocampo , Camundongos , Ratos-Toupeira/fisiologia
8.
Nat Commun ; 13(1): 355, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039495

RESUMO

The naked mole-rat (NMR) is an exceptionally long-lived rodent that shows no increase of mortality with age, defining it as a demographically non-aging mammal. Here, we perform bisulfite sequencing of the blood of > 100 NMRs, assessing > 3 million common CpG sites. Unsupervised clustering based on sites whose methylation correlates with age reveals an age-related methylome remodeling, and we also observe a methylome information loss, suggesting that NMRs age. We develop an epigenetic aging clock that accurately predicts the NMR age. We show that these animals age much slower than mice and much faster than humans, consistent with their known maximum lifespans. Interestingly, patterns of age-related changes of clock sites in Tert and Prpf19 differ between NMRs and mice, but there are also sites conserved between the two species. Together, the data indicate that NMRs, like other mammals, epigenetically age even in the absence of demographic aging of this species.


Assuntos
Envelhecimento/genética , Epigênese Genética , Ratos-Toupeira/crescimento & desenvolvimento , Ratos-Toupeira/genética , Envelhecimento/sangue , Animais , Relógios Biológicos/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Demografia , Regulação da Expressão Gênica , Humanos , Camundongos , Ratos-Toupeira/sangue , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Telomerase/genética , Telomerase/metabolismo
9.
Biol Rev Camb Philos Soc ; 97(1): 115-140, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34476892

RESUMO

The naked mole-rat (Heterocephalus glaber) has fascinated zoologists for at least half a century. It has also generated considerable biomedical interest not only because of its extraordinary longevity, but also because of unusual protective features (e.g. its tolerance of variable oxygen availability), which may be pertinent to several human disease states, including ischemia/reperfusion injury and neurodegeneration. A recent article entitled 'Surprisingly long survival of premature conclusions about naked mole-rat biology' described 28 'myths' which, those authors claimed, are a 'perpetuation of beautiful, but falsified, hypotheses' and impede our understanding of this enigmatic mammal. Here, we re-examine each of these 'myths' based on evidence published in the scientific literature. Following Braude et al., we argue that these 'myths' fall into four main categories: (i) 'myths' that would be better described as oversimplifications, some of which persist solely in the popular press; (ii) 'myths' that are based on incomplete understanding, where more evidence is clearly needed; (iii) 'myths' where the accumulation of evidence over the years has led to a revision in interpretation, but where there is no significant disagreement among scientists currently working in the field; (iv) 'myths' where there is a genuine difference in opinion among active researchers, based on alternative interpretations of the available evidence. The term 'myth' is particularly inappropriate when applied to competing, evidence-based hypotheses, which form part of the normal evolution of scientific knowledge. Here, we provide a comprehensive critical review of naked mole-rat biology and attempt to clarify some of these misconceptions.


Assuntos
Longevidade , Ratos-Toupeira , Animais , Biologia
10.
J Proteome Res ; 20(9): 4258-4271, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34351155

RESUMO

Naked mole-rats (NMRs) are a long-lived animal that do not develop age-related diseases including neurodegeneration and cancer. Additionally, NMRs have a profound ability to consume reactive oxygen species (ROS) and survive long periods of oxygen deprivation. Here, we evaluated the unique proteome across selected brain regions of NMRs at different ages. Compared to mice, we observed numerous differentially expressed proteins related to altered mitochondrial function in all brain regions, suggesting that the mitochondria in NMRs may have adapted to compensate for energy demands associated with living in a harsh, underground environment. Keeping in mind that ROS can induce polyunsaturated fatty acid peroxidation under periods of neuronal stress, we investigated docosahexaenoic acid (DHA) and arachidonic acid (AA) peroxidation under oxygen-deprived conditions and observed that NMRs undergo DHA and AA peroxidation to a far less extent compared to mice. Further, our proteomic analysis also suggested enhanced peroxisome proliferator-activated receptor (PPAR)-retinoid X receptor (RXR) activation in NMRs via the PPARα-RXR and PPARγ-RXR complexes. Correspondingly, we present several lines of evidence supporting PPAR activation, including increased eicosapetenoic and omega-3 docosapentaenoic acid, as well as an upregulation of fatty acid-binding protein 3 and 4, known transporters of omega-3 fatty acids and PPAR activators. These results suggest enhanced PPARα and PPARγ signaling as a potential, innate neuroprotective mechanism in NMRs.


Assuntos
PPAR alfa , PPAR gama , Animais , Encéfalo , Camundongos , Ratos-Toupeira , Neuroproteção , Oxigênio , PPAR alfa/genética , PPAR gama/genética , Proteômica
11.
Adv Exp Med Biol ; 1319: 137-156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424515

RESUMO

Naked mole-rats share some sensory characteristics with other subterraneans, including lack of object vision, retention of the ability to entrain their circadian rhythm to light, and poor hearing. On the other hand, a characteristic that may be specialized in the naked mole-rat is their exquisite orienting responses to the touch of even a single body vibrissa. They have about 100 whisker-like body vibrissae on their otherwise furless bodies. They are also insensitive to chemical and inflammatory pain, likely an adaptation to living in an atmosphere that is high in carbon dioxide, a result of many respiring individuals driving carbon dioxide accumulation. Naked mole-rats have the highest population density among subterranean mammals. High levels of carbon dioxide cause tissue acidosis and associated pain. Remarkably, naked mole-rats are completely immune to carbon dioxide-induced pulmonary edema. However, they retain the ability to detect acid as a taste (sour). Finally, their ability to smell and discriminate odors is comparable to that of rats and mice, but their vomeronasal organ, associated with sensing pheromones, is extremely small and shows a complete lack of post-natal growth. In this chapter, we review what is known about the sensory systems of the naked mole-rat with emphasis on how they differ from other mammals, and even other subterraneans. More extensive accounts of the naked mole-rat's auditory and pain systems can be found in other chapters of this book.


Assuntos
Ratos-Toupeira , Dor , Adaptação Fisiológica , Animais , Audição , Vibrissas
12.
Adv Exp Med Biol ; 1319: 197-220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424517

RESUMO

The naked mole-rat (Heterocephalus glaber) is famous for its longevity and unusual physiology. This eusocial species that lives in highly ordered and hierarchical colonies with a single breeding queen, also discovered secrets enabling somewhat pain-free living around 20 million years ago. Unlike most mammals, naked mole-rats do not feel the burn of chili pepper's active ingredient, capsaicin, nor the sting of acid. Indeed, by accumulating mutations in genes encoding proteins that are only now being exploited as targets for new pain therapies (the nerve growth factor receptor TrkA and voltage-gated sodium channel, NaV1.7), this species mastered the art of analgesia before humans evolved. Recently, we have identified pain-insensitivity as a trait shared by several closely related African mole-rat species. In this chapter we will show how African mole-rats have evolved pain insensitivity as well as discussing what the proximate factors may have been that led to the evolution of pain-free traits.


Assuntos
Ratos-Toupeira , Dor , Animais , Capsaicina , Longevidade , Ratos-Toupeira/genética
13.
Adv Exp Med Biol ; 1319: 255-269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424519

RESUMO

Naked mole-rats are extremely tolerant to low concentrations of oxygen (hypoxia) and high concentrations of carbon dioxide (hypercapnia), which is consistent with the environment that they inhabit. Naked mole-rats combine subterranean living with living in very densely populated colonies where oxygen becomes depleted and carbon dioxide accumulates. In the laboratory, naked mole-rats fully recover from 5 h exposure to 5% O2 and 5 h exposure to 80% CO2, whereas both conditions are rapidly lethal to similarly sized laboratory mice. During anoxia (0% O2) naked mole-rats enter a suspended animation-like state and switch from aerobic metabolism of glucose to anaerobic metabolism of fructose. Additional fascinating characteristics include that naked mole-rats show intrinsic brain tolerance to anoxia; a complete lack of hypoxia-induced and CO2-induced pulmonary edema; and reduced aversion to high concentrations of CO2 and acidic fumes. Here we outline a constellation of physiological and molecular adaptations that correlate with the naked mole-rat's hypoxic/hypercapnic tolerance and which offer potential targets for ameliorating pathological conditions in humans, such as the damage caused during cerebral ischemia.


Assuntos
Hipercapnia , Ratos-Toupeira , Adaptação Fisiológica , Animais , Hipóxia , Camundongos , Oxigênio
14.
Adv Exp Med Biol ; 1319: 271-286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424520

RESUMO

The naked mole-rat's (Heterocephalus glaber) social and subterranean lifestyle imposes several evolutionary pressures which have shaped its physiology. One example is low oxygen availability in a crowded burrow system which the naked mole-rat has adapted to via several mechanisms. Here we describe a metabolic rewiring which enables the naked mole-rat to switch substrates in glycolysis from glucose to fructose thereby circumventing feedback inhibition at phosphofructokinase (PFK1) to allow unrestrained glycolytic flux and ATP supply under hypoxia. Preferential shift to fructose metabolism occurs in other species and biological systems as a means to provide fuel, water or like in the naked mole-rat, protection in a low oxygen environment. We review fructose metabolism through an ecological lens and suggest that the metabolic adaptation to utilize fructose in the naked mole-rat may have evolved to simultaneously combat multiple challenges posed by its hostile environment.


Assuntos
Ratos-Toupeira , Paladar , Aclimatação , Adaptação Fisiológica , Animais , Oxigênio
15.
Adv Exp Med Biol ; 1319: 409-420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424527

RESUMO

The naked mole-rat is a species of growing research interest. Recent focus on this species from both a biomedical and zoological perspective has led to important discoveries regarding eusociality and ecophysiological and sensory traits associated with life below ground as well as natural protection from variable oxygen availability, acid-induced pain, and the vagaries of aging. These features serve to remind us that many foundational discoveries have arisen using extremophilic organisms and elucidating the mechanisms they employ to survive the harsh environmental conditions they encounter. Investigating these evolved features also facilitates a better understanding of several human disease states that share features with this harsh subterranean milieu. Here, we provide an overview of some unanswered questions and future directions to advance this field, alongside discussion of the tools that could facilitate accelerated progression of research using this enigmatic model.


Assuntos
Envelhecimento , Ratos-Toupeira , Animais , Dor
16.
Aging (Albany NY) ; 12(21): 22266-22290, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33147569

RESUMO

Naked mole-rats are extraordinarily long-lived rodents that offer unique opportunities to study the molecular origins of age-related neurodegenerative diseases. Remarkably, they do not accumulate amyloid plaques, even though their brains contain high concentrations of amyloid beta (Aß) peptide from a young age. Therefore, they represent a particularly favourable organism to study the mechanisms of resistance against Aß neurotoxicity. Here we examine the composition, phase behaviour, and Aß interactions of naked mole-rat brain lipids. Relative to mouse, naked mole-rat brain lipids are rich in cholesterol and contain sphingomyelin in lower amounts and of shorter chain lengths. Proteins associated with the metabolism of ceramides, sphingomyelins and sphingosine-1-phosphate receptor 1 were also found to be decreased in naked mole-rat brain lysates. Correspondingly, we find that naked mole-rat brain lipid membranes exhibit a high degree of phase separation, with the liquid ordered phase extending to 80% of the supported lipid bilayer. These observations are consistent with the 'membrane pacemaker' hypothesis of ageing, according to which long-living species have lipid membranes particularly resistant to oxidative damage. We also found that exposure to Aß disrupts naked mole-rat brain lipid membranes significantly, breaking the membrane into pieces while mouse brain derived lipids remain largely intact upon Aß exposure.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Encéfalo/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Colesterol/metabolismo , Bicamadas Lipídicas/metabolismo , Lipidômica , Fragmentos de Peptídeos/toxicidade , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Membrana Celular/metabolismo , Membrana Celular/patologia , Feminino , Longevidade , Masculino , Camundongos Endogâmicos C57BL , Ratos-Toupeira , Especificidade da Espécie
17.
Curr Biol ; 30(22): 4329-4341.e4, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32888484

RESUMO

Naked mole-rats are highly vocal, eusocial, subterranean rodents with, counterintuitively, poor hearing. The causes underlying their altered hearing are unknown. Moreover, whether altered hearing is degenerate or adaptive to their unique lifestyles is controversial. We used various methods to identify the factors contributing to altered hearing in naked and the related Damaraland mole-rats and to examine whether these alterations result from relaxed or adaptive selection. Remarkably, we found that cochlear amplification was absent from both species despite normal prestin function in outer hair cells isolated from naked mole-rats. Instead, loss of cochlear amplification appears to result from abnormal hair bundle morphologies observed in both species. By exploiting a well-curated deafness phenotype-genotype database, we identified amino acid substitutions consistent with abnormal hair bundle morphology and reduced hearing sensitivity. Amino acid substitutions were found in unique groups of six hair bundle link proteins. Molecular evolutionary analyses revealed shifts in selection pressure at both the gene and the codon level for five of these six hair bundle link proteins. Substitutions in three of these proteins are associated exclusively with altered hearing. Altogether, our findings identify the likely mechanism of altered hearing in African mole-rats, making them the only identified mammals naturally lacking cochlear amplification. Moreover, our findings suggest that altered hearing in African mole-rats is adaptive, perhaps tailoring hearing to eusocial and subterranean lifestyles. Finally, our work reveals multiple, unique evolutionary trajectories in African mole-rat hearing and establishes species members as naturally occurring disease models to investigate human hearing loss.


Assuntos
Adaptação Fisiológica/genética , Surdez/genética , Evolução Molecular , Audição/genética , Ratos-Toupeira/fisiologia , África , Substituição de Aminoácidos , Animais , Células Ciliadas Auditivas/fisiologia , Células Ciliadas Auditivas/ultraestrutura , Microscopia Eletrônica de Varredura , Seleção Genética
18.
Curr Biol ; 30(11): R649-R651, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32516615

RESUMO

Naked mole-rats are adapted to living in a low-oxygen and high-CO2 environment. Elevated environmental CO2 inhibits brain activity and has acted as a selection pressure to reduce GABAergic tone, which in turn reduces energetic needs in a hypoxic habitat.


Assuntos
Dióxido de Carbono , Crowdsourcing , Animais , Encéfalo , Máscaras , Ratos-Toupeira , Neurobiologia , Convulsões , Ácido gama-Aminobutírico
19.
Neurobiol Pain ; 8: 100047, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32478202

RESUMO

Naked mole-rats (Heterocephalus glaber) have adaptations within their pain pathway that are beneficial to survival in large colonies within poorly ventilated burrow systems, with lower O2 and higher CO2 ambient levels than ground-level environments. These adaptations ultimately lead to a partial disruption of the C-fiber pain pathway, which enables naked mole-rats to not feel pain from the acidosis associated with CO2 accumulation. One hallmark of this disruption is that naked mole-rats do not express neuropeptides, such as Substance P and calcitonin gene-related peptide in their cutaneous C-fibers, effectively making the peptidergic pain pathway hypofunctional. One C-fiber pathway that remains unstudied in the naked mole-rat is the non-peptidergic, purinergic pathway, despite this being a key pathway for inflammatory pain. The current study aimed to establish the functionality of the purinergic pathway in naked mole-rats and the effectiveness of cannabinoids in attenuating pain through this pathway. Cannabinoids can manage chronic inflammatory pain in both humans and mouse models, and studies suggest a major downstream role for the purinergic receptor, P2X3, in this treatment. Here we used Ca2+-imaging of cultured dorsal root ganglion neurons and in vivo behavioral testing to demonstrate that the P2X3 pathway is functional in naked mole-rats. Additionally, formalin-induced inflammatory pain was reduced by the cannabinoid receptor agonist, WIN55 (inflammatory, but not acute phase) and the P2X3 receptor antagonist A-317491 (acute and inflammatory phases). This study establishes that the purinergic C-fiber pathway is present and functional in naked mole-rats and that cannabinoid-mediated analgesia occurs in this species.

20.
Artigo em Inglês | MEDLINE | ID: mdl-32206859

RESUMO

The naked mole-rat (Heterocephalus glaber) is famous for its longevity and unusual physiology. This eusocial species that lives in highly ordered and hierarchical colonies with a single breeding queen, also discovered secrets enabling somewhat pain-free living around 20 million years ago. Unlike most mammals, naked mole-rats do not feel the burn of chili pepper's active ingredient, capsaicin, nor the sting of acid. Indeed, by accumulating mutations in genes encoding proteins that are only now being exploited as targets for new pain therapies (the nerve growth factor receptor TrkA and voltage-gated sodium channel, NaV1.7), this species mastered the art of analgesia before humans evolved. Recently, we have identified pain insensitivity as a trait shared by several closely related African mole-rat species. One of these African mole-rats, the Highveld mole-rat (Cryptomys hottentotus pretoriae), is uniquely completely impervious and pain free when confronted with electrophilic compounds that activate the TRPA1 ion channel. The Highveld mole-rat has evolved a biophysical mechanism to shut down the activation of sensory neurons that drive pain. In this review, we will show how mole-rats have evolved pain insensitivity as well as discussing what the proximate factors may have been that led to the evolution of pain-free traits.


Assuntos
Comportamento Animal , Evolução Molecular , Ratos-Toupeira/metabolismo , Nociceptores/metabolismo , Percepção da Dor , Limiar da Dor , Dor/metabolismo , Canal de Cátion TRPA1/metabolismo , Animais , Ratos-Toupeira/genética , Dor/genética , Dor/fisiopatologia , Transdução de Sinais , Especificidade da Espécie , Canal de Cátion TRPA1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA