Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Cancer Immunol Immunother ; 73(8): 157, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834889

RESUMO

Interleukin-2 (IL-2), a cytokine with pleiotropic immune effects, was the first approved cancer immunotherapy agent. However, IL-2 is associated with systemic toxicity due to binding with its ligand IL-2Rα, such as vascular leakage syndrome, limiting its clinical applications. Despite efforts to extend the half-life of IL-2 and abolish IL-2Rα interactions, the risk of toxicity remains unresolved. In this study, we developed the bispecific fusion protein MB2033, comprising a novel IL-2 variant (IL-2v) connected to anti-programmed death ligand 1 (PD-L1) via a silenced Fc domain. The IL-2v of MB2033 exhibits attenuated affinity for IL-2Rßγ without binding to IL-2Rα. The binding affinity of MB2033 for PD-L1 is greater than that for IL-2Rßγ, indicating its preferential targeting of PD-L1+ tumor cells to induce tumor-specific immune activation. Accordingly, MB2033 exhibited significantly reduced regulatory T cell activation, while inducing comparable CD8+ T cell activation to recombinant human IL-2 (rhIL-2). MB2033 induced lower immune cell expansion and reduced cytokine levels compared with rhIL-2 in human peripheral blood mononuclear cells, indicating a decreased risk of peripheral toxicity. MB2033 exhibited superior anti-tumor efficacy, including tumor growth inhibition and complete responses, compared with avelumab monotherapy in an MC38 syngeneic mouse model. In normal mice, MB2033 was safer than non-α IL-2v and tolerable up to 30 mg/kg. These preclinical results provide evidence of the dual advantages of MB2033 with an enhanced safety and potent clinical efficacy for cancer treatment.


Assuntos
Antígeno B7-H1 , Interleucina-2 , Proteínas Recombinantes de Fusão , Animais , Camundongos , Humanos , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Feminino , Camundongos Endogâmicos C57BL , Imunoterapia/métodos , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia
2.
Metabolites ; 14(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38392979

RESUMO

Climate change has increased variable weather patterns that affect plants. To address these issues, we developed a microbial biocontrol agent against drought stress in kimchi cabbage (Brassica rapa L. subsp. pekinensis). We selected three bacterial strains (Leifsonia sp. CS9, Bacillus toyonensis TSJ7, and Lysinibacillus capsici TT41) because they showed a survival rate of up to 50% and good growth rate when treated with 30% PEG 6000. The three strains were treated with kimchi cabbage to confirm their enhanced drought stress resistance under non-watering conditions. Among the three strains, the TT41 treated group showed a significant increase in various plant parameters compared with the negative control on the 7th day. We performed extensive profiling of primary and secondary metabolites from kimchi cabbage and the TT41 strain. Multivariate and pathway analyses revealed that only the TT41 group clustered with the well-watered group and showed almost the same metabolome on the 7th day. When treated with TT41, lactic acid was identified as an indicator metabolite that significantly improved drought stress tolerance. Furthermore, lactic acid treatment effectively induced drought stress tolerance in kimchi cabbage, similar to that achieved with the TT41 strain.

3.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167064, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342417

RESUMO

Tracking alterations in polar metabolite and lipid levels during anti-tuberculosis (TB) interventions is an emerging biomarker discovery and validation approach due to its sensitivity in capturing changes and reflecting on the host status. Here, we employed deep plasma metabolic phenotyping to explore the TB patient metabolome during three phases of treatment: at baseline, during intensive phase treatment, and upon treatment completion. Differential metabolites (DMs) in each period were determined, and the pathway-level biological alterations were explored by untargeted metabolomics-guided functional interpretations that bypassed identification. We identified 41 DMs and 39 pathways that changed during intensive phase completion. Notably, levels of certain amino acids including histidine, bile acids, and metabolites of purine metabolism were dramatically increased. The altered pathways included those involved in the metabolism of amino acids, glycerophospholipids, and purine. At the end of treatment, 44 DMs were discovered. The levels of glutamine, bile acids, and lysophosphatidylinositol significantly increased compared to baseline; the levels of carboxylates and hypotaurine declined. In addition, 37 pathways principally associated with the metabolism of amino acids, carbohydrates, and glycan altered at treatment completion. The potential of each DM for diagnosing TB was examined using a cohort consisting of TB patients, those with latent infections, and controls. Logistic regression revealed four biomarkers (taurine, methionine, glutamine, and acetyl-carnitine) that exhibited excellent performance in differential diagnosis. In conclusion, we identified metabolites that could serve as useful metabolic signatures for TB management and elucidated underlying biological processes affected by the crosstalk between host and TB pathogen during treatment.


Assuntos
Glutamina , Tuberculose , Humanos , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Aminoácidos , Aminas , Ácidos e Sais Biliares , Purinas
4.
Nanoscale ; 16(11): 5613-5623, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38412042

RESUMO

Modern silicone-based epidermal electronics engineered for body temperature sensing represent a pivotal development in the quest for advancing preventive medicine and enhancing post-surgical monitoring. While these compact and highly flexible electronics empower real-time monitoring in dynamic environments, a noteworthy limitation is the challenge in regulating the infiltration or obstruction of heat from the external environment into the surface layers of these electronics. The study presents a cost-effective temperature sensing solution by embedding wireless electronics in a multi-layered elastomeric composite to meet the dual needs of enhanced thermal insulation for encapsulation in contact with air and improved thermal conductivity for the substrate in contact with the skin. The encapsulating composite benefits from the inclusion of hollow silica microspheres, which reduce the thermal conductivity by 40%, while non-spherical aluminum nitride enhances the thermal conductivity of the substrate by 370%. The addition of particles to the respective composites inevitably leads to an increase in modulus. Two composite elements are engineered to coexist while maintaining a matching low modulus of 3.4 MPa and a stretchability exceeding 30%, all without compromising the optimized thermal properties. Consecutive thermal, electrical, and mechanical characterization confirms the sensor's capacity for precise body temperature monitoring during a single day's lifespan, while also assessing the influence of behavioral factors on body temperature.

5.
Aesthetic Plast Surg ; 48(2): 221-227, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37644191

RESUMO

INTRODUCTION: Although various products are commonly used for skin rejuvenation, solid-type hyaluronic acid (HA) as an injectable form has not been researched or utilized. This study aimed to demonstrate the safety and efficacy of solid-type HA in thread form, which differs from the conventional gel-type HA commonly used. METHOD: Solid-type HA threads, conventional HA fillers, and polydioxanone (PDO) threads were inserted into the dorsal subcutaneous layer of mice. Photographs were taken on days 0, 1, 3, and 7, and on day 7, the samples were harvested for histological analysis. Inflammatory reactions and detection of collagen were confirmed through tissue staining, and real-time PCR was conducted to quantify collagen synthesis. RESULTS: In the histological analysis, the PDO threads exhibited a greater inflammatory response compared to the HA threads. Masson's trichrome staining revealed a higher degree of collagen synthesis in the HA thread group compared to the HA filler group. While collagen type 1 expression was significantly higher in the PDO thread group than in the HA thread group, the HA thread group showed higher expression levels of collagen type 3. Furthermore, the PDO thread group demonstrated a statistically significant increase in TGF-ß1 compared to the HA group. CONCLUSION: This in vivo study demonstrated the stable application of solid-type pure HA threads and their potential for inducing collagen production, while also yielding a low inflammatory response. The findings highlight the promising applications of solid-type HA in the field of cosmetic dermatology. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Preenchedores Dérmicos , Camundongos , Animais , Preenchedores Dérmicos/efeitos adversos , Polidioxanona , Ácido Hialurônico/efeitos adversos , Pele , Colágeno
7.
ACS Nano ; 17(24): 25731-25738, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38060370

RESUMO

Transition metal dichalcogenides (TMDs) occur in the thermodynamically stable trigonal prismatic (2H) phase or the metastable octahedral (1T) phase. Phase engineering of TMDs has proven to be a powerful tool for applications in energy storage devices as well as in electrocatalysis. However, the mechanism of the phase transition in TMDs and the synthesis of phase-controlled TMDs remain challenging. Here we report the synthesis of Re-doped WS2 monolayer quantum dots (MQDs) using a simple colloidal chemical process. We find that the incorporation of a small amount of electron-rich Re atoms in WS2 changes the metal-metal distance in the 2H phase initially, which introduces strain in the structure (strained 2H (S2H) phase). Increasing the concentration of Re atoms sequentially transforms the S2H phase into the 1T and 1T' phases to release the strain. In addition, we performed controlled experiments by doping MoS2 with Re to distinguish between Re and Mo atoms in scanning transmission electron microscopy images and quantified the concentration range of Re atoms in each phase of MoS2, indicating that phase engineering of WS2 or MoS2 is possible by doping with different amounts of Re atoms. We demonstrate that the 1T' WS2 MQDs with 49 at. % Re show superior catalytic performance (a low Tafel slope of 44 mV/dec, a low overpotential of 158 mV at a current density of 10 mA/cm2, and long-term durability up to 5000 cycles) for the hydrogen evolution reaction. Our findings provide understanding and control of the phase transitions in TMDs, which will allow for the efficient manufacturing and translation of phase-engineered TMDs.

8.
Sci Adv ; 9(44): eadj0461, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37910607

RESUMO

The automation of organic compound synthesis is pivotal for expediting the development of such compounds. In addition, enhancing development efficiency can be achieved by incorporating autonomous functions alongside automation. To achieve this, we developed an autonomous synthesis robot that harnesses the power of artificial intelligence (AI) and robotic technology to establish optimal synthetic recipes. Given a target molecule, our AI initially plans synthetic pathways and defines reaction conditions. It then iteratively refines these plans using feedback from the experimental robot, gradually optimizing the recipe. The system performance was validated by successfully determining synthetic recipes for three organic compounds, yielding that conversion rates that outperform existing references. Notably, this autonomous system is designed around batch reactors, making it accessible and valuable to chemists in standard laboratory settings, thereby streamlining research endeavors.

9.
ACS Nano ; 17(23): 23936-23943, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37991883

RESUMO

The electrochemical production of H2O2 via the two-electron oxygen-reduction reaction (2e- ORR) has been actively studied using systems with atomically dispersed metal-nitrogen-carbon (M-N-C) structures. However, the development of well-defined M-N-C structures that restrict the migration and agglomeration of single-metal sites remains elusive. Herein, we demonstrate a Langmuir-Blodgett (LB) monolayer of cobalt phthalocyanine (CoPc) on monolayer graphene (LB CoPc/G) as a single-metal catalyst for the 2e- ORR. The as-prepared CoPc LB monolayer has a ß-form crystalline structure with a lattice space for the facile adsorption of oxygen molecules on the cobalt active sites. The CoPc LB monolayer system provides highly exposed Co atoms in a well-defined structure without agglomeration, resulting in significantly improved catalytic activity, which is manifested by a very high H2O2 production rate per catalyst (31.04 mol gcat-1 h-1) and TOF (36.5 s-1) with constant production stability for 24 hours. To the best of our knowledge, the CoPc LB monolayer system exhibits the highest H2O2 production rate per active site. This fundamental study suggests that an LB monolayer of molecules with single-metal atoms as a well-defined structure works for single-atom catalysts.

10.
ACS Omega ; 8(44): 41718-41727, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37969993

RESUMO

Although soybean (Glycine max) leaves generate building blocks to produce seeds, a comprehensive understanding of the metabolic changes in soybean leaves during the entire growth stages is limited. Here, we investigated the metabolite changes in soybean leaves from five cultivars among four vegetative (V) and eight reproductive (R) stages using metabolite profiling coupled with chemometrics. Principal component analysis (PCA) of all samples showed a clear separation by growth stage. The total amount of monosaccharides and organic acids for energy production were highly detected in the V stage samples, accumulating in concentrations 2.5 and 1.7 times higher than in the R stage samples, respectively. The results of partial least-squares-discriminant analysis (PLS-DA) revealed a clear separation from R1 to R5 by the first PLS, suggesting significant alterations in the metabolic networks up to R5. After flowering, the stage of seed formation, R5, was associated with lower levels of most amino acids and an accumulation of phytosterols. The negative correlation observed between amino acids and phytosterol levels suggests a sophisticated coordination between carbon and nitrogen metabolism in plant, ensuring and supporting optimal growth (r = -0.50085, P = 0.0001). In addition, R-stage samples had decreased monosaccharide levels, indicating redistribution to seeds and senescence-related metabolite changes. Thus, metabolite profiling coupled with chemometrics could be a useful tool for investigating alterations in metabolic networks during various plant growth and development stages. Furthermore, we observed variations in flavonoid contents among the different cultivars. The results could be a basis of further studies on the source-sink interactions in the plant system.

11.
J Microbiol Biotechnol ; 34(5): 1-14, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37994101

RESUMO

Oxidative stress is a key factor in the pathogenesis of benign prostatic hyperplasia (BPH) that leads to inflammation. This study aimed to evaluate the ameliorative effects of Salvia miltiorrhiza Bunge extract (HLT-101) on BPH through the regulation of oxidative stress and inflammation. A testosterone propionate (TP)-induced BPH rat model was orally administered HLT-101 (20, 40, or 80 mg/kg), and its effects on oxidative stress- and inflammation-related gene expression were examined. Further, HLT-101 was assessed for its effect on reactive oxygen species (ROS) levels and Nrf-2/HO-1 signaling pathways in BPH-1 cells. HLT-101 decreased testosterone-induced excessive free radical production and inflammatory factor activation. Moreover, HLT-101 treatment significantly decreased the intracellular ROS level in the TNF-α and IFN-γ treated BPH-1 cells through the activation of Nrf-2. In addition, HLT-101 treatment inhibited the NF-κB pathway and androgen receptor (AR) signaling, which is highly linked to the pathogenesis of BPH. Therefore, HLT-101 has the potential to be an effective treatment reagent for BPH because of its ability to reduce inflammation and oxidative stress via Nrf-2/HO-1 signaling.

12.
Food Res Int ; 169: 112831, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254406

RESUMO

Sesame seeds contain several lipids and fragrances that offer health benefits. However, no studies have reported a relationship between the lipids or flavor compounds of sesame seeds and environmental factors. In this study, we aimed to identify this relationship by analyzing the contents of lipidic and flavor compounds in fifteen genotypes of sesame seeds grown in two cultivation regions (Jeonju and Miryang) and years (2018 and 2019). Herein, 17 lipids and 62 flavor compounds were detected. Multivariate statistical analyses revealed that the cultivation year had a larger influence on the contents of lipidic and flavor compounds than the cultivation region and genotype. Furthermore, heat stress due to high cultivation temperature in 2018 caused the accumulation of sugar and secondary metabolites, increased flavor-related substances, and inhibited the degradation of fatty acids. Our study is the first to demonstrate the metabolic changes in lipids and flavor components of sesame in response to environmental temperature changes affected by different cultivation years. Therefore, this study provides guidance for the cultivation of commercially advantageous sesame seeds in improving the quality of sesame seeds and their products.


Assuntos
Sesamum , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/metabolismo , Temperatura , Ácidos Graxos/metabolismo , Odorantes
13.
Bioengineering (Basel) ; 10(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37106689

RESUMO

Information technology has been actively utilized in the field of imaging diagnosis using artificial intelligence (AI), which provides benefits to human health. Readings of abdominal hemorrhage lesions using AI can be utilized in situations where lesions cannot be read due to emergencies or the absence of specialists; however, there is a lack of related research due to the difficulty in collecting and acquiring images. In this study, we processed the abdominal computed tomography (CT) database provided by multiple hospitals for utilization in deep learning and detected abdominal hemorrhage lesions in real time using an AI model designed in a cascade structure using deep learning, a subfield of AI. The AI model was used a detection model to detect lesions distributed in various sizes with high accuracy, and a classification model that could screen out images without lesions was placed before the detection model to solve the problem of increasing false positives owing to the input of images without lesions in actual clinical cases. The developed method achieved 93.22% sensitivity and 99.60% specificity.

14.
Chem Biol Interact ; 375: 110430, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36868495

RESUMO

The mechanism of indomethacin toxicity at the systemic level is largely unknown. In this study, multi-specimen molecular characterization was conducted in rats treated with three doses of indomethacin (2.5, 5, and 10 mg/kg) for 1 week. Kidney, liver, urine, and serum samples were collected and analyzed using untargeted metabolomics. The kidney and liver transcriptomics data (10 mg indomethacin/kg and control) were subjected to a comprehensive omics-based analysis. Indomethacin exposure at 2.5 and 5 mg/kg doses did not cause significant metabolome changes, whereas considerable alterations in the metabolic profile compared to the control were induced by a dose of 10 mg/kg. Decreased levels of metabolites and an increased creatine level in the urine metabolome indicated injury to the kidney. The integrated omics analysis in both liver and kidney revealed an oxidant-antioxidant imbalance due to an excess of reactive oxygen species, likely originating from dysfunctional mitochondria. Specifically, indomethacin exposure induced changes in metabolites related to the citrate cycle, cell membrane composition, and DNA synthesis in the kidney. The dysregulation of genes related to ferroptosis and suppression of amino acid and fatty acid metabolism were evidence of indomethacin-induced nephrotoxicity. In conclusion, a multi-specimen omics investigation provided important insights into the mechanism of indomethacin toxicity. The identification of targets that ameliorate indomethacin toxicity will enhance the therapeutic utility of this drug.


Assuntos
Indometacina , Multiômica , Ratos , Animais , Indometacina/toxicidade , Rim/metabolismo , Metabolômica , Metaboloma
15.
J Fungi (Basel) ; 9(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36983507

RESUMO

In nature; Flammulina velutipes, also known as winter mushrooms, vary in the color of their fruiting bodies, from black, yellow, pale yellow, or beige to white. The purpose of this study was to compare the genome sequences of different colored strains of F. velutipes and to identify variations in the genes associated with fruiting body color. Comparative genomics of six F. velutipes strains revealed 70 white-strain-specific variations, including single nucleotide polymorphisms (SNPs) and insertions/deletions (indels), in the genome sequences. Among them, 36 variations were located in the open reading frames, and only one variation was identified as a mutation with a disruptive in-frame deletion (ΔGCGCAC) within the annotated gene phenylalanine ammonia-lyase 1 (Fvpal1). This mutation was found to cause a deletion, without a frameshift, of two amino acids at positions 112 and 113 (arginine and threonine, respectively) in the Fvpal1 gene of the white strain. Specific primers to detect this mutation were designed, and amplification refractory mutation system (ARMS) polymerase chain reaction (PCR) was performed to evaluate whether the mutation is color specific for the F. velutipes fruiting body. PCR analysis of a total of 95 F. velutipes strains revealed that this mutation was present only in white strains. In addition, monospores of the heterozygous mutant were isolated, and whether this mutation was related to the color of the fruiting body was evaluated by a mating assay. In the mating analysis of monospores with mutations in Fvpal1, it was found that this mutation plays an important role in determining the color of the fruiting body. Furthermore, the deletion (Δ112RT113) in Fvpal1 is located between motifs that play a key role in the catalytic function of FvPAL1. These results suggest that this mutation can be used as an effective marker for the color-specific breeding of F. velutipes, a representative edible mushroom.

16.
Plants (Basel) ; 12(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36986982

RESUMO

Light-emitting diode (LED) technology is one of the most important light sources in the plant industry for enhancing growth and specific metabolites in plants. In this study, we analyzed the growth, primary and secondary metabolites of 10 days old kohlrabi (Brassica oleracea var. gongylodes) sprouts exposed to different LED light conditions. The results showed that the highest fresh weight was achieved under red LED light, whereas the highest shoot and root lengths were recorded below the blue LED light. Furthermore, high-performance liquid chromatography (HPLC) analysis revealed the presence of 13 phenylpropanoid compounds, 8 glucosinolates (GSLs), and 5 different carotenoids. The phenylpropanoid and GSL contents were highest under blue LED light. In contrast, the carotenoid content was found to be maximum beneath white LED light. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) of the 71 identified metabolites using HPLC and gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) showed a clear separation, indicating that different LEDs exhibited variation in the accumulation of primary and secondary metabolites. A heat map and hierarchical clustering analysis revealed that blue LED light accumulated the highest amount of primary and secondary metabolites. Overall, our results demonstrate that exposure of kohlrabi sprouts to blue LED light is the most suitable condition for the highest growth and is effective in increasing the phenylpropanoid and GSL content, whereas white light might be used to enhance carotenoid compounds in kohlrabi sprouts.

17.
Biomed Pharmacother ; 158: 114187, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36916440

RESUMO

In this study, we investigated the lipidome of tuberculosis patients during standard chemotherapy to discover biosignatures that could aid therapeutic monitoring. UPLC-QToF MS was used to analyze 82 baseline and treatment plasma samples of patients with pulmonary tuberculosis. Subsequently, a data-driven and knowledge-based workflow, including robust annotation, statistical analysis, and functional analysis, was applied to assess lipid profiles during treatment. Overall, the lipids species from 17 lipid subclasses were significantly altered by anti-tuberculosis chemotherapy. Cholesterol ester (CE), monoacylglycerols, and phosphatidylcholine (PC) were upregulated, whereas triacylglycerols, sphingomyelin, and ether-linked phosphatidylethanolamines (PE O-) were downregulated. Notably, PCs demonstrated a clear upward expression pattern during tuberculosis treatment. Several lipid species were identified as potential biomarkers for therapeutic monitoring, such as PC(42:6), PE(O-40:5), CE(24:6), and dihexosylceramide Hex2Cer(34:2;2 O). Functional and lipid gene enrichment analysis revealed alterations in pathways related to lipid metabolism and host immune responses. In conclusion, this study provides a foundation for the use of lipids as biomarkers for clinical management of tuberculosis.


Assuntos
Ésteres do Colesterol , Metabolismo dos Lipídeos , Humanos , Triglicerídeos , Fosfatidilcolinas , Biomarcadores
18.
Plant Cell Environ ; 46(5): 1504-1520, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36683564

RESUMO

Drought tolerance is important for grain crops, including rice (Oryza sativa); for example, rice cultivated under intermittent irrigation produces less methane gas compared to rice grown in anaerobic paddy field conditions, but these plants require greater drought tolerance. Moreover, the roles of rice circadian-clock genes in drought tolerance remain largely unknown. Here, we show that the mutation of LOV KELCH REPEAT PROTEIN 2 (OsLKP2) enhanced drought tolerance by increasing cuticular wax biosynthesis. Among ZEITLUPE family genes, OsLKP2 expression specifically increased under dehydration stress. OsLKP2 knockdown (oslkp2-1) and knockout (oslkp2-2) mutants exhibited enhanced drought tolerance. Cuticular waxes inhibit non-stomatal water loss. Under drought conditions, total wax loads on the leaf surface increased by approximately 10% in oslkp2-1 and oslkp2-2 compared to the wild type, and the transcript levels of cuticular wax biosynthesis genes were upregulated in the oslkp2 mutants. Yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays revealed that OsLKP2 interacts with GIGANTEA (OsGI) in the nucleus. The osgi mutants also showed enhanced tolerance to drought stress, with a high density of wax crystals on their leaf surface. These results demonstrate that the OsLKP2-OsGI interaction negatively regulates wax accumulation on leaf surfaces, thereby decreasing rice resilience to drought stress.


Assuntos
Secas , Oryza , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Repetição Kelch , Ceras/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo
20.
Sensors (Basel) ; 22(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36298111

RESUMO

This paper presents a design formula for a printed spiral coil to ensure the maximum quality factor (Q-factor). The formula is composed of a pattern's metal thickness, single pattern width, total pattern width, and turn number, and is effective in the megahertz (MHz) frequency range. During the formula's design, the resistance, self-inductance, and Q-factor are calculated according to the ratio of each pattern's width and total pattern width and the turn number for different metal thicknesses, frequencies, and total pattern widths using a volume filament model (VFM). With a given turn number and metal thickness, the optimal ratio of individual and total pattern widths can be determined to ensure the maximum Q-factor. To verify the formula, some optimal coils were fabricated, and the calculations and measurements were shown to have good agreement. Furthermore, the optimized coils were shown to have higher coupling efficiency than the coils without optimal dimensions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA