Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(14): e2309183, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160321

RESUMO

Development of miniaturized thin-film lithium-ion batteries (TF-LIBs) using vacuum deposition techniques is crucial for low-scale applications, but addressing low energy density remains a challenge. In this work, structures analogous to SiOx-based thin-film electrodes are designed with close resemblance to traditional LIB slurry formulations including active material, conductive agent, and binder. The thin-film is produced using mid-frequency sputtering with a single hybrid target consisting of SiOx nanoparticles, carbon nanotubes, and polytetrafluoroethylene. The thin-film SiOx/PPFC (plasma-polymerized fluorocarbon) involves a combination of SiOx and conductive carbon within the PPFC matrix. This results in enhanced electronic conductivity and superior elasticity and hardness in comparison to a conventional pure SiOx-based thin-film. The electrochemical performance of the half-cell consisting of thin-film SiOx/PPFC demonstrates remarkable cycling stability, with a capacity retention of 74.8% up to the 1000th cycle at 0.5 C. In addition, a full cell using the LiNi0.6Co0.2Mn0.2O2 thin-film as the cathode material exhibits an exceptional initial capacity of ≈120 mAh g-1 at 0.1 C and cycle performance, marked by a capacity retention of 90.8% from the first cycle to the 500th cycle at a 1 C rate. This work will be a stepping stone for the AM/CB/B composite electrodes in TF-LIBs.

2.
ACS Appl Mater Interfaces ; 15(27): 32783-32791, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37366002

RESUMO

A cost-effective and environmentally friendly approach is proposed for producing N- and S-codoped multicolor-emission carbon dots (N- and S-codoped MCDs) at a mild reaction temperature (150 °C) and relatively short time (3 h). In this process, adenine sulfate acts as a novel precursor and doping agent, effectively reacting with other reagents such as citric acid, para-aminosalicylic acid, and ortho-phenylenediamine, even during solvent-free pyrolysis. The distinctive structures of reagents lead to the increased amount of graphitic nitrogen and sulfur doping in the N- and S-codoped MCDs. Notably, the obtained N- and S-codoped MCDs exhibit considerable fluorescence intensities, and their emission color can be adjusted from blue to yellow. The observed tunable photoluminescence can be attributed to variations in the surface state and the amount of N and S contents. Furthermore, due to the favorable optical properties, good water solubility and biocompatibility, and low cytotoxicity, these N- and S-codoped MCDs, especially green carbon dots, are successfully applied as fluorescent probes for bioimaging. The affordable and environmentally friendly synthesis method employed to create N- and S-codoped MCDs, combined with their remarkable optical properties, offers a promising avenue for their use in various fields, particularly in biomedical applications.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Nitrogênio/química , Sulfatos , Pontos Quânticos/química , Enxofre/química
3.
Micromachines (Basel) ; 14(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838148

RESUMO

Most microsensors are composed of devices and covers. Due to the complicated structure of the cover and various other requirements, it difficult to use wafer-level packaging with such microsensors. In particular, for monolithic microsensors combined with read-out ICs, the available process margins are further reduced due to the thermal and mechanical effects applied to IC wafers during the packaging process. This research proposes a low-temperature, wafer-level vacuum packaging technology based on Cu-Sn bonding and nano-multilayer getter materials for use with microbolometers. In Cu-Sn bonding, the Cu/Cu3Sn/Cu microstructure required to ensure reliability can be obtained by optimizing the bonding temperature, pressure, and time. The Zr-Ti-Ru based nanomultilayer getter coating inside the cap wafer with high step height has been improved by self-aligned shadow masking. The device pad, composed of bonded wafer, was opened by wafer grinding, and the thermoelectrical properties were evaluated at the wafer-level. The bonding strength and vacuum level were characterized by a shear test and thermoelectrical test using microbolometer test pixels. The vacuum level of the packaged samples showed very narrow distribution near 50 mTorr. This wafer-level packaging platform could be very useful for sensor development whereby high reliability and excellent mechanical/optical performance are both required. Due to its reliability and the low material cost and bonding temperature, this wafer-based packaging approach is suitable for commercial applications.

4.
Small ; 18(24): e2201134, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35506524

RESUMO

All-solid-state thin-film batteries (ASSTFBs) are promising next-generation battery systems, but critical challenges such as low-energy-density remain. The low-energy-density might persist with low-voltage cathode material; hence, high-voltage cathode material development is required. While LiNi0.5 Mn1.5 O4 (LNM) has been considered a promising high-voltage cathode material. This study investigates the electrochemical properties of LNM thin films based on the correlation between the ordering of cations (Ni and Mn) and oxygen vacancies (VO ). The authors find that the cations' order changes from a disordered structure to an ordered structure with an increased oxygen flow rate during deposition. The optimized LNM fabricated using a 60:40 ratio of Ar to O2 exhibits the highest rate capability (321.4 mAh cm-3 @ 20 C) and most prolonged cycle performance for 500 cycles. The role of VO within the LNM structure and the lower activation energy of ordered LNM compared to disordered LNM through first-principles density functional theory calculations is elucidated. The superior electrochemical performance (276.9 mAh cm-3 @ 0.5 C) and high cyclic performance (at 93.9%, 500 cycles) are corroborated by demonstrating flexible ASSTFB cells using LiPON solid-state electrolyte and thin-film Li anode. This work paves the way for future research on the fabrication of high-performance flexible ASSTFBs.

5.
ACS Appl Mater Interfaces ; 14(11): 13490-13498, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35258276

RESUMO

Zinc oxynitride (ZnON) has the potential to overcome the performance and stability limitations of current amorphous oxide semiconductors because ZnON-based thin-film transistors (TFTs) have a high field-effect mobility of 50 cm2/Vs and exceptional stability under bias and light illumination. However, due to the weak zinc-nitrogen interaction, ZnON is chemically unstable─N is rapidly volatilized in air. As a result, recent research on ZnON TFTs has focused on improving air stability. We demonstrate through experimental and first-principles studies that the ZnF2/ZnON bilayer structure provides a facile way to achieve air stability with carrier controllability. This increase in air stability (e.g., nitrogen non-volatilization) occurs because the ZnF2 layer effectively protects the atomic mixing between ZnON and air, and the decrease in the ZnON carrier concentration is caused by a shallow-to-deep electronic transition of nitrogen deficiency diffused from ZnON into the interface. Further, the TFT based on the ZnF2/ZnON bilayer structure enables long-term air stability while retaining an optimal switching property of high field-effect mobility (∼100 cm2/Vs) even at a relatively low post-annealing temperature. The ZnF2/ZnON-bilayer TFT device exhibits fast switching behavior between 1 kHz and 0.1 MHz while maintaining a stable and clear switching response, paving the way for next-generation high-speed electronic applications.

6.
ACS Nano ; 16(2): 1826-1835, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34965087

RESUMO

The ubiquitous field-effect transistor (FET) is widely used in modern digital integrated circuits, computers, communications, sensors, and other applications. However, reliable biological FET (bio-FET) is not available in real life due to the rigorous requirement for highly sensitive and selective bio-FET fabrication, which remains a challenging task. Here, we report an ultrasensitive and selective bio-FET created by the nanorings of molybdenum disulfide (MoS2) nanopores inspired by nuclear pore complexes. We characterize the nanoring of MoS2 nanopores by scanning transmission electron microscopy, Raman, and X-ray photoelectron spectroscopy spectra. After fabricating MoS2 nanopore rings-based bio-FET, we confirm edge-selective functionalization by the gold nanoparticle tethering test and the change of electrical signal of the bio-FET. Ultrahigh sensitivity of the MoS2 nanopore edge rings-based bio-FET (limit of detection of 1 ag/mL) and high selectivity are accomplished by effective coupling of the aptamers on the nanorings of the MoS2 nanopore edge for cortisol detection. We believe that MoS2 nanopore edge rings-based bio-FET would provide platforms for everyday biosensors with ultrahigh sensitivity and selectivity.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanoporos , Ouro , Molibdênio/química
7.
ACS Nano ; 15(3): 5467-5477, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33703885

RESUMO

Earth-abundant transition metal dichalcogenide nanosheets have emerged as an excellent catalyst for electrochemical water splitting to generate H2. Alloying the nanosheets with heteroatoms is a promising strategy to enhance their catalytic performance. Herein, we synthesized hexagonal (2H) phase Mo1-xNbxSe2 nanosheets over the whole composition range using a solvothermal reaction. Alloying results in a variety of atomic-scale crystal defects such as Se vacancies, metal vacancies, and adatoms. The defect content is maximized when x approaches 0.5. Detailed structure analysis revealed that the NbSe2 bonding structures in the alloy phase are more disordered than the MoSe2 ones. Compared to MoSe2 and NbSe2, Mo0.5Nb0.5Se2 exhibits much higher electrocatalytic performance for hydrogen evolution reaction. First-principles calculation was performed for the formation energy in the models for vacancies and adatoms, supporting that the alloy phase has more defects than either NbSe2 or MoSe2. The calculation predicted that the separated NbSe2 domain at x = 0.5 favors the concurrent formation of Nb/Se vacancies and adatoms in a highly cooperative way. Moreover, the Gibbs free energy along the reaction path suggests that the enhanced HER performance of alloy nanosheets originates from the higher concentration of defects that favor H atom adsorption.

8.
ACS Nano ; 15(3): 4561-4575, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33629830

RESUMO

In accordance with the fourth industrial revolution (4IR), thin-film all-solid-state batteries (TF-ASSBs) are being revived as the most promising energy source to power small electronic devices. However, current TF-ASSBs still suffer from the perpetual necessity of high-performance battery components. While every component, a series of a TF solid electrolyte (i.e., lithium phosphorus oxynitride (LiPON)) and electrodes (cathode and Li metal anode), has been considered vital, the lack of understanding of and ability to ameliorate the cathode (or anode)-electrolyte interface (CEI) (or AEI) has impeded the development of TF-ASSBs. In this work, we suggest an ensemble design of TF-ASSBs using LiPON (500 nm), an amorphous TF-V2O5-x cathode with oxygen vacancies (Ovacancy), a thin evaporated Li anode (evp-Li) with a thickness of 1 µm, and an artificial ultrathin Al2O3 layer between evp-Li and LiPON. Well-defined Ovacancy sites, such as O(II)vacancy and O(III)vacancy, in amorphous TF-V2O5-x not only allow isotropic Li+ diffusion at the CEI but also enhance both the ionic and electronic conductivities. For the AEI, we employed protective Al2O3, which was specially sputtered using the facing target sputtering (FTS) method to form a homogeneous layer without damage from plasma. In regard to the contact with evp-Li, interfacial stability, electrochemical impedance, and battery performance, the nanometric Al2O3 layers (1 nm) were optimized at different temperatures (40, 60, and 80 °C). The TF-ASSB cell containing Al2O3 (1 nm) delivers a high specific capacity of 474.01 mAh cm-3 under 60 °C at 2 C for the 400th cycle, and it achieves a long lifespan as well as ultrafast rate capability levels, even at 100 C; these results were comparable to those of TF Li-ion battery cells using a liquid electrolyte. We demonstrated the reaction mechanism at the AEI utilizing time-of-flight secondary ion mass spectrometry (TOF-SIMS) and molecular dynamics (MD) simulations for a better understanding. Our design provides a signpost for future research on the rational structure of TF-LIBs.

9.
Nanoscale Adv ; 3(3): 710-715, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36133848

RESUMO

The integration of transition metal dichalcogenide (TMDC) layers on nanostructures has attracted growing attention as a means to improve the physical properties of the ultrathin TMDC materials. In this work, the influence of SiO2 nanopillars (NPs) with a height of 50 nm on the optical characteristics of MoS2 layers is investigated. Using a metal organic chemical vapor deposition technique, a few layers of MoS2 were conformally grown on the NP-patterned SiO2/Si substrates without notable strain. The photoluminescence and Raman intensities of the MoS2 layers on the SiO2 NPs were larger than those observed from a flat SiO2 surface. For 100 nm-SiO2/Si wafers, the 50 nm-NP patterning enabled improved absorption in the MoS2 layers over the whole visible wavelength range. Optical simulations showed that a strong electric-field could be formed at the NP surface, which led to the enhanced absorption in the MoS2 layers. These results suggest a versatile strategy to realize high-efficiency TMDC-based optoelectronic devices.

10.
Anal Chem ; 92(19): 13434-13442, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32865398

RESUMO

Particle size is a key parameter that must be measured to ensure reproducible production of cellulose nanocrystals (CNCs) and to achieve reliable performance metrics for specific CNC applications. Nevertheless, size measurements for CNCs are challenging due to their broad size distribution, irregular rod-shaped particles, and propensity to aggregate and agglomerate. We report an interlaboratory comparison (ILC) that tests transmission electron microscopy (TEM) protocols for image acquisition and analysis. Samples of CNCs were prepared on TEM grids in a single laboratory, and detailed data acquisition and analysis protocols were provided to participants. CNCs were imaged and the size of individual particles was analyzed in 10 participating laboratories that represent a cross section of academic, industrial, and government laboratories with varying levels of experience with imaging CNCs. The data for each laboratory were fit to a skew normal distribution that accommodates the variability in central location and distribution width and asymmetries for the various datasets. Consensus values were obtained by modeling the variation between laboratories using a skew normal distribution. This approach gave consensus distributions with values for mean, standard deviation, and shape factor of 95.8, 38.2, and 6.3 nm for length and 7.7, 2.2, and 2.9 nm for width, respectively. Comparison of the degree of overlap between distributions for individual laboratories indicates that differences in imaging resolution contribute to the variation in measured widths. We conclude that the selection of individual CNCs for analysis and the variability in CNC agglomeration and staining are the main factors that lead to variations in measured length and width between laboratories.

11.
ACS Nano ; 14(9): 12184-12194, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32852936

RESUMO

Two-dimensional Re dichalcogenide nanostructures are promising electrocatalysts for the hydrogen evolution reaction (HER). Herein, we report the adatom doping of various transition metals (TM = Mn, Fe, Co, Ni, and Cu) in ReSe2 nanosheets synthesized using a solvothermal reaction. As the atomic number of TM increases from Mn to Cu, the adatoms on Re sites become more favored over the substitution. In the case of Ni, the fraction of adatoms reaches 90%. Ni doping resulted in the most effective enhancement in the HER catalytic performance, which was characterized by overpotentials of 82 and 109 mV at 10 mA cm-2 in 0.5 M H2SO4 and 1 M KOH, respectively, and the Tafel slopes of 54 and 81 mV dec-1. First-principles calculations predicted that the adatom doping structures (TMs on Re sites) have higher catalytic activity compared with the substitution ones. The adsorbed H atoms formed a midgap hybridized state via direct bonding with the orbitals of TM adatom. The present work provides a deeper understanding into how TM doping can provide the catalytically active sites in these ReSe2 nanosheets.

12.
ACS Nano ; 14(9): 11995-12005, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32813497

RESUMO

Two-dimensional ReSe2 has emerged as a promising electrocatalyst for the hydrogen evolution reaction (HER), but its catalytic activity needs to be further improved. Herein, we synthesized Re1-xMoxSe2 alloy nanosheets with the whole range of x (0-100%) using a hydrothermal reaction. The phase evolved in the order of 1T″ (triclinic) → 1T' (monoclinic) → 2H (hexagonal) upon increasing x. In the nanosheets with x = 10%, the substitutional Mo atoms tended to aggregate in the 1T″ ReSe2 phase with Se vacancies. The incorporation of the 1T' phase makes the alloy nanosheets more metallic than the end compositions. The 10% Mo substitution significantly enhanced the electrocatalytic performance toward HER (in 0.5 M H2SO4), with a current of 10 mA cm-2 at an overpotential of 77 mV (vs RHE) and a Tafel slope of 42 mV dec-1. First-principles calculations of the three phases (1T″, 2H, and 1T') predicted a phase transition of 1T″-2H at x ≈ 65% as well as the production of a 1T' phase along the composition tuning, which are consistent with the experiments. At x = 12.5%, two Mo atoms prefer to form a pair along the Re4 chains. Gibbs free energy along the reaction path indicates that the best HER performance of nanosheets with 10% Mo originates from the Mo atoms that form Mo-H when there are adjacent Se vacancies.

13.
ACS Nano ; 14(5): 6295-6304, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32356967

RESUMO

Two-dimensional MoSe2 has emerged as a promising electrocatalyst for the hydrogen evolution reaction (HER), although its catalytic activity needs to be further improved. Herein, we report Se-rich MoSe2 nanosheets synthesized using a hydrothermal reaction, displaying much enhanced HER performance at the Se/Mo ratio of 2.3. The transition from the 2H to the 1T' phase occurred as Se/Mo exceeded 2. Structural analysis revealed the presence of Se adatoms as well as the formation of Se-Se bonding. Based on first-principles calculations, we propose two equally stable Se-rich structures. In the first one, excess Se atoms bridge two MoSe2 layers via the interlayer Se-Se bonds. In the second one, the Se atoms substitute for the Mo atoms, and extra Se atoms are added closest to the Mo-substituted Se. Calculation of Gibbs free energy along the reaction path indicates that the Se adatoms of the second model are the most active sites for HER.

14.
Small ; 16(13): e2000081, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32147958

RESUMO

2D MoS2 nanostructures have recently attracted considerable attention because of their outstanding electrocatalytic properties. The synthesis of unique Co-Ru-MoS2 hybrid nanosheets with excellent catalytic activity toward overall water splitting in alkaline solution is reported. 1T' phase MoS2 nanosheets are doped homogeneously with Co atoms and decorated with Ru nanoparticles. The catalytic performance of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is characterized by low overpotentials of 52 and 308 mV at 10 mA cm-2 and Tafel slopes of 55 and 50 mV decade-1 in 1.0 m KOH, respectively. Analysis of X-ray photoelectron and absorption spectra of the catalysts show that the MoS2 well retained its metallic 1T' phase, which guarantees good electrical conductivity during the reaction. The Gibbs free energy calculation for the reaction pathway in alkaline electrolyte confirms that the Ru nanoparticles on the Co-doped MoS2 greatly enhance the HER activity. Water adsorption and dissociation take place favorably on the Ru, and the doped Co further catalyzes HER by making the reaction intermediates more favorable. The high OER performance is attributed to the catalytically active RuO2 nanoparticles that are produced via oxidation of Ru nanoparticles.

15.
ACS Omega ; 4(15): 16578-16584, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31616838

RESUMO

The key of spintronic devices using the spin-transfer torque phenomenon is the effective reduction of switching current density by lowering the damping constant and the saturation magnetization while retaining strong perpendicular magnetic anisotropy. To reduce the saturation magnetization, particular conditions such as specific substitutions or buffer layers are required. Herein, we demonstrate highly reduced saturation magnetization in tetragonal D022 Mn3-x Ga thin films prepared by rf magnetron sputtering, where the epitaxial growth is examined on various substrates without any buffer layer. As the lattice mismatch between the sample and the substrate decreases from LaAlO3 and (LaAlO3)0.3(Sr2AlTaO6)0.7 to SrTiO3, the quality of Mn3-x Ga films is improved together with the magnetic and electronic properties. Especially, the Mn3-x Ga thin film epitaxially grown on the SrTiO3 substrate, fully oriented along the c axis perpendicular to the film plane, exhibits significantly reduced saturation magnetization as low as 0.06 µB, compared to previous results. By the structural and chemical analyses, we find that the predominant removal of Mn II atoms and the large population of Mn3+ ions affect the reduced saturation magnetization. Our findings provide insights into the magnetic properties of Mn3-x Ga crystals, which promise great potential for spin-related device applications.

16.
Nanoscale ; 11(12): 5171-5179, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30843575

RESUMO

We report a ternary silver chalcogenide, Ag2Se0.5Te0.5, as a new topological material with improved quantum transport properties. Single-crystalline nanostructures of ternary silver chalcogenides Ag2SexTe1-x are synthesized with a tunable chemical composition via the chemical vapor transport method. Quantum transport studies reveal that Ag2Se0.5Te0.5 nanowires present topological surface states with higher electron mobility and longer mean free path compared to binary Ag-chalcogenides. First-principles calculations also indicate that Ag2Se0.5Te0.5 is a topological insulator, and the observed enhancement in transport properties could imply reduced bulk carrier contribution in the new ternary silver chalcogenide.

17.
Nanoscale ; 11(2): 431-436, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30565636

RESUMO

Two-dimensional (2D) transition metal dichalcogenides with van der Waals gaps have attracted much attention due to their peculiarly distinctive physical properties from their bulk counterparts. Among them, vanadium diselenide (VSe2) has been considered to be a promising candidate for future spintronic devices, as room temperature ferromagnetism was reported recently. However, detailed crystallography and properties of VSe2 nanosheets have been less explored. Here, we report the atomistic real-space observation of the van der Waals layered structure of VSe2 for the first time. Furthermore, simply by controlling the carrier gas flow rate, a morphological variation of the surface area and thickness of VSe2 nanosheets was observed. The room temperature ferromagnetic feature of single VSe2 nanosheets was also revealed by magnetic force microscopy measurements. Our findings will play a significant role in the research of intrinsic 2D ferromagnetic materials.

18.
Nanoscale ; 10(40): 18920-18925, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30288523

RESUMO

Heterostructures enable the control of transport and recombination of charge carriers, which are either injected through electrodes, or created by light illumination. Instead of full 2D-material-heterostructures in device applications, using hybrid heterostructures consisting of 2D and 3D materials is an alternative approach to take advantage of the unique physical properties of 2D materials. In addition, 3D dielectric nanostructures exhibit useful optical properties such as broadband omnidirectional antireflection effects and strongly concentrated light near the surface. In this work, the optical properties of 2D MoS2 monolayers conformally coated on 3D Si-based nanocone (NC) arrays are investigated. Numerical calculations show that the absorption in MoS2 monolayers on SiO2 NC is significantly enhanced, compared with that for MoS2 monolayers on Si NC. The weak light confinement in low refractive index SiO2 NC leads to greater absorption in the MoS2 monolayers. The measured photoluminescence and Raman intensities of the MoS2 monolayers on SiO2 NC are much greater than those on Si NC, which supports the calculation results. This work demonstrates that 2D MoS2-3D Si nano-heterostructures are promising candidates for use in high-performance integrated optoelectronic device applications.

19.
ACS Appl Mater Interfaces ; 10(18): 15873-15879, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29667810

RESUMO

In this study, the properties of indium oxynitride (InON) semiconductor films grown by reactive radio frequency sputtering were examined both experimentally and theoretically. Also, thin-film transistors (TFTs) incorporating InON as the active layer were evaluated for the first time. It is found that InON films exhibit high stability upon prolonged exposure to air and the corresponding TFTs are more stable when subjected to negative bias illumination stress, compared to devices based on indium oxide (In2O3) or zinc oxynitride (ZnON) semiconductors. X-ray photoelectron spectroscopy analyses of the oxygen 1s peaks suggest that as nitrogen is incorporated into In2O3 to form InON, the relative fraction of oxygen-deficient regions decreases significantly, which is most likely to occur by having the valence band maximum shifted up. Density functional theory calculations indicate that the formation energy of InN is much lower than Zn3N2, thus accounting for the higher stability of InON compared to ZnON in air.

20.
Adv Mater ; 30(12): e1705542, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29369423

RESUMO

Thin-film transistors (TFTs) based on multilayer molybdenum diselenide (MoSe2 ) synthesized by modified atmospheric pressure chemical vapor deposition (APCVD) exhibit outstanding photoresponsivity (103.1 A W-1 ), while it is generally believed that optical response of multilayer transition metal dichalcogenides (TMDs) is significantly limited due to their indirect bandgap and inefficient photoexcitation process. Here, the fundamental origin of such a high photoresponsivity in the synthesized multilayer MoSe2 TFTs is sought. A unique structural characteristic of the APCVD-grown MoSe2 is observed, in which interstitial Mo atoms exist between basal planes, unlike usual 2H phase TMDs. Density functional theory calculations and photoinduced transfer characteristics reveal that such interstitial Mo atoms form photoreactive electronic states in the bandgap. Models indicate that huge photoamplification is attributed to trapped holes in subgap states, resulting in a significant photovoltaic effect. In this study, the fundamental origin of high responsivity with synthetic MoSe2 phototransistors is identified, suggesting a novel route to high-performance, multifunctional 2D material devices for future wearable sensor applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA