Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Adv Sci (Weinh) ; : e2307963, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602451

RESUMO

In recent decades, the role of tumor biomechanics on cancer cell behavior at the primary site has been increasingly appreciated. However, the effect of primary tumor biomechanics on the latter stages of the metastatic cascade, such as metastatic seeding of secondary sites and outgrowth remains underappreciated. This work sought to address this in the context of triple negative breast cancer (TNBC), a cancer type known to aggressively disseminate at all stages of disease progression. Using mechanically tuneable model systems, mimicking the range of stiffness's typically found within breast tumors, it is found that, contrary to expectations, cancer cells exposed to softer microenvironments are more able to colonize secondary tissues. It is shown that heightened cell survival is driven by enhanced metabolism of fatty acids within TNBC cells exposed to softer microenvironments. It is demonstrated that uncoupling cellular mechanosensing through integrin ß1 blocking antibody effectively causes stiff primed TNBC cells to behave like their soft counterparts, both in vitro and in vivo. This work is the first to show that softer tumor microenvironments may be contributing to changes in disease outcome by imprinting on TNBC cells a greater metabolic flexibility and conferring discrete cell survival advantages.

2.
Nat Cancer ; 4(9): 1326-1344, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37640930

RESUMO

The lysyl oxidase family represents a promising target in stromal targeting of solid tumors due to the importance of this family in crosslinking and stabilizing fibrillar collagens and its known role in tumor desmoplasia. Using small-molecule drug-design approaches, we generated and validated PXS-5505, a first-in-class highly selective and potent pan-lysyl oxidase inhibitor. We demonstrate in vitro and in vivo that pan-lysyl oxidase inhibition decreases chemotherapy-induced pancreatic tumor desmoplasia and stiffness, reduces cancer cell invasion and metastasis, improves tumor perfusion and enhances the efficacy of chemotherapy in the autochthonous genetically engineered KPC model, while also demonstrating antifibrotic effects in human patient-derived xenograft models of pancreatic cancer. PXS-5505 is orally bioavailable, safe and effective at inhibiting lysyl oxidase activity in tissues. Our findings present the rationale for progression of a pan-lysyl oxidase inhibitor aimed at eliciting a reduction in stromal matrix to potentiate chemotherapy in pancreatic ductal adenocarcinoma.


Assuntos
Pancreatopatias , Neoplasias Pancreáticas , Humanos , Gencitabina , Proteína-Lisina 6-Oxidase , Neoplasias Pancreáticas/tratamento farmacológico
3.
Genome Med ; 14(1): 126, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36404344

RESUMO

BACKGROUND: Squamous cell carcinoma (SqCC) is a subtype of non-small cell lung cancer for which patient prognosis remains poor. The extracellular matrix (ECM) is critical in regulating cell behavior; however, its importance in tumor aggressiveness remains to be comprehensively characterized. METHODS: Multi-omics data of SqCC human tumor specimens was combined to characterize ECM features associated with initiation and recurrence. Penalized logistic regression was used to define a matrix risk signature for SqCC tumors and its performance across a panel of tumor types and in SqCC premalignant lesions was evaluated. Consensus clustering was used to define prognostic matreotypes for SqCC tumors. Matreotype-specific tumor biology was defined by integration of bulk RNAseq with scRNAseq data, cell type deconvolution, analysis of ligand-receptor interactions and enriched biological pathways, and through cross comparison of matreotype expression profiles with aging and idiopathic pulmonary fibrosis lung profiles. RESULTS: This analysis revealed subtype-specific ECM signatures associated with tumor initiation that were predictive of premalignant progression. We identified an ECM-enriched tumor subtype associated with the poorest prognosis. In silico analysis indicates that matrix remodeling programs differentially activate intracellular signaling in tumor and stromal cells to reinforce matrix remodeling associated with resistance and progression. The matrix subtype with the poorest prognosis resembles ECM remodeling in idiopathic pulmonary fibrosis and may represent a field of cancerization associated with elevated cancer risk. CONCLUSIONS: Collectively, this analysis defines matrix-driven features of poor prognosis to inform precision medicine prevention and treatment strategies towards improving SqCC patient outcome.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Fibrose Pulmonar Idiopática , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Carcinoma de Células Escamosas/metabolismo , Prognóstico , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia
4.
Nat Commun ; 13(1): 4587, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933466

RESUMO

The tumour stroma, and in particular the extracellular matrix (ECM), is a salient feature of solid tumours that plays a crucial role in shaping their progression. Many desmoplastic tumours including breast cancer involve the significant accumulation of type I collagen. However, recently it has become clear that the precise distribution and organisation of matrix molecules such as collagen I is equally as important in the tumour as their abundance. Cancer-associated fibroblasts (CAFs) coexist within breast cancer tissues and play both pro- and anti-tumourigenic roles through remodelling the ECM. Here, using temporal proteomic profiling of decellularized tumours, we interrogate the evolving matrisome during breast cancer progression. We identify 4 key matrisomal clusters, and pinpoint collagen type XII as a critical component that regulates collagen type I organisation. Through combining our proteomics with single-cell transcriptomics, and genetic manipulation models, we show how CAF-secreted collagen XII alters collagen I organisation to create a pro-invasive microenvironment supporting metastatic dissemination. Finally, we show in patient cohorts that collagen XII may represent an indicator of breast cancer patients at high risk of metastatic relapse.


Assuntos
Neoplasias da Mama , Colágeno Tipo XII/metabolismo , Metástase Neoplásica , Microambiente Tumoral , Neoplasias da Mama/patologia , Colágeno , Colágeno Tipo I , Matriz Extracelular/patologia , Feminino , Humanos , Metástase Neoplásica/patologia , Recidiva Local de Neoplasia/patologia , Proteômica
5.
J Clin Invest ; 132(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838048

RESUMO

The metabolic dependencies of cancer cells have substantial potential to be exploited to improve the diagnosis and treatment of cancer. Creatine riboside (CR) is identified as a urinary metabolite associated with risk and prognosis in lung and liver cancer. However, the source of high CR levels in patients with cancer as well as their implications for the treatment of these aggressive cancers remain unclear. By integrating multiomics data on lung and liver cancer, we have shown that CR is a cancer cell-derived metabolite. Global metabolomics and gene expression analysis of human tumors and matched liquid biopsies, together with functional studies, revealed that dysregulation of the mitochondrial urea cycle and a nucleotide imbalance were associated with high CR levels and indicators of a poor prognosis. This metabolic phenotype was associated with reduced immune infiltration and supported rapid cancer cell proliferation that drove aggressive tumor growth. CRhi cancer cells were auxotrophic for arginine, revealing a metabolic vulnerability that may be exploited therapeutically. This highlights the potential of CR not only as a poor-prognosis biomarker but also as a companion biomarker to inform the administration of arginine-targeted therapies in precision medicine strategies to improve survival for patients with cancer.


Assuntos
Neoplasias Hepáticas , Ribonucleosídeos , Arginina/metabolismo , Creatina/análogos & derivados , Creatina/urina , Humanos , Ribonucleosídeos/urina
6.
Cells ; 11(5)2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269398

RESUMO

ßIII-tubulin is a neuronal microtubule protein that is aberrantly expressed in epithelial cancers. The microtubule network is implicated in regulating the architecture and dynamics of the mitochondrial network, although the isotype-specific role for ß-tubulin proteins that constitute this microtubule network remains unclear. High-resolution electron microscopy revealed that manipulation of ßIII-tubulin expression levels impacts the volume and shape of mitochondria. Analysis of the structural domains of the protein identifies that the C-terminal tail of ßIII-tubulin, which distinguishes this protein from other ß-tubulin isotypes, significantly contributes to the isotype-specific effects of ßIII-tubulin on mitochondrial architecture. Mass spectrometry analysis of protein-protein interactions with ß-tubulin isotypes identifies that ßIII-tubulin specifically interacts with regulators of mitochondrial dynamics that may mediate these functional effects. Advanced quantitative dynamic lattice light sheet imaging of the mitochondrial network reveals that ßIII-tubulin promotes a more dynamic and extended reticular mitochondrial network, and regulates mitochondrial volume. A regulatory role for the ßIII-tubulin C-terminal tail in mitochondrial network dynamics and architecture has widespread implications for the maintenance of mitochondrial homeostasis in health and disease.


Assuntos
Microtúbulos , Tubulina (Proteína) , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Tubulina (Proteína)/metabolismo
7.
Clin Exp Metastasis ; 39(2): 263-277, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35072851

RESUMO

While immense strides have been made in understanding tumor biology and in developing effective treatments that have substantially improved the prognosis of cancer patients, metastasis remains the major cause of cancer-related death. Improvements in the detection and treatment of primary tumors are contributing to a growing, detailed understanding of the dynamics of metastatic progression. Yet challenges remain in detecting metastatic dissemination prior to the establishment of overt metastases and in predicting which patients are at the highest risk of developing metastatic disease. Further improvements in understanding the mechanisms governing metastasis have great potential to inform the adaptation of existing therapies and the development of novel approaches to more effectively control metastatic disease. This article presents a forward-looking perspective on the challenges that remain in the treatment of metastasis, and the exciting emerging approaches that promise to transform the treatment of metastasis in cancer patients.


Assuntos
Neoplasias , Humanos , Metástase Neoplásica , Neoplasias/patologia , Neoplasias/terapia , Prognóstico
8.
Methods Mol Biol ; 2294: 27-42, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33742392

RESUMO

Three-dimensional models of spheroid formation have been routinely used in the cancer field to test the colony forming capacity of malignant cells in an in vitro setting. Use of such a model provides a robust surrogate for in vivo testing, enabling large-scale interrogation into the effect of certain treatment conditions. This adapted protocol describes a high throughput and readily accessible composite alginate hydrogel system for spheroid formation, within a biomechanically tunable three-dimensional environment. This model therefore allows users to examine the effect of certain treatment conditions while cells are embedded within a hydrogel of defined stiffness. This is particularly important in the context of cancer where cells experience a wide range of mechanical properties within their microenvironment, driven by widespread changes in the extracellular matrix composition and architecture.This protocol describes a high-throughput method which results in homogeneous interpenetrating polymer networks of collagen and alginate. We show that this network readily supports single-cell spheroid formation in numerous malignant cell lines (breast cancer, lung cancer, and melanoma) and that these can be robustly analyzed for colony formation measures such as spheroid size, spheroid number, and overall cell viability; therefore, allowing users to undertake high-throughput, in vitro screening against a controlled biomechanical background.


Assuntos
Técnicas de Cultura de Células/métodos , Ensaios de Triagem em Larga Escala/métodos , Esferoides Celulares/citologia , Alicerces Teciduais/química , Alginatos/química , Animais , Linhagem Celular Tumoral , Colágeno/química , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Hidrogéis/química , Esferoides Celulares/metabolismo , Estresse Mecânico
9.
Front Oncol ; 10: 1766, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014869

RESUMO

The dissemination of tumor cells to local and distant sites presents a significant challenge in the clinical management of many solid tumors. These cells may remain dormant for months or years before overt metastases are re-awakened. The components of the extracellular matrix, their posttranslational modifications and their associated factors provide mechanical, physical and chemical cues to these disseminated tumor cells. These cues regulate the proliferative and survival capacity of these cells and lay the foundation for their engraftment and colonization. Crosstalk between tumor cells, stromal and immune cells within primary and secondary sites is fundamental to extracellular matrix remodeling that feeds back to regulate tumor cell dormancy and outgrowth. This review will examine the role of the extracellular matrix and its associated factors in establishing a fertile soil from which individual tumor cells and micrometastases establish primary and secondary tumors. We will focus on the role of the lung extracellular matrix in providing the architectural support for local metastases in lung cancer, and distant metastases in many solid tumors. This review will define how the matrix and matrix associated components are collectively regulated by lung epithelial cells, fibroblasts and resident immune cells to orchestrate tumor dormancy and outgrowth in the lung. Recent advances in targeting these lung-resident tumor cell subpopulations to prevent metastatic disease will be discussed. The development of novel matrix-targeted strategies have the potential to significantly reduce the burden of metastatic disease in lung and other solid tumors and significantly improve patient outcome in these diseases.

10.
J Pharm Biomed Anal ; 191: 113596, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32937240

RESUMO

Creatine riboside (CR) is a novel metabolite of cancer metabolism. It is a urinary diagnostic biomarker of lung and liver cancer risk and prognosis. The level of CR is highly positive correlated in tumor and urine indicating that it is derived from human lung and liver cancers. A precise and sensitive ultra-pressure liquid chromatography-tandem mass spectrometry (UPLC-ESI-MS/MS) method was developed and validated for simultaneous quantification of the noninvasive biomarker CR, along with creatinine riboside (CNR), and their precursors creatine and creatinine, utilizing the labeled internal standard creatine riboside-13C,15N2 (CR-13C,15N2). Chromatography was carried out on a hydrophilic interaction chromatography column under a gradient mobile phase condition. MRM transitions were monitored for CR (264.1 > 132.1, m/z), CNR (246.1 > 113.9, m/z), creatine (132.0 > 72.0, m/z), creatinine (114.0 > 85.8, m/z) and CR-13C,15N2 (267.1 > 134.9, m/z) with a 11.0 min run time in the positive mode ionization. The calibration plot of the method was linear over the concentration range of 4.50-10,000 nM. Method validation was performed according to regulatory guidelines established for sensitivity, selectivity, calibration curve, stability at different storage conditions, reinjection reproducibility, ruggedness with acceptable accuracy, and precision. This assay was applied for the quantification of CR along with CNR, creatine and creatinine in a subset of urine and serum samples from the National Cancer Institute - Maryland (NCI-MD) cohort population controls and lung cancer cases. It can be standardized and used in multiple laboratories for cancer diagnosis and determining the efficacy of cancer therapy and monitoring cancer recurrence.


Assuntos
Neoplasias Pulmonares , Espectrometria de Massas em Tandem , Biomarcadores Tumorais , Cromatografia Líquida de Alta Pressão , Creatina/análogos & derivados , Creatinina , Humanos , Neoplasias Pulmonares/diagnóstico , Maryland , National Cancer Institute (U.S.) , Recidiva Local de Neoplasia , Controle da População , Reprodutibilidade dos Testes , Ribonucleosídeos , Estados Unidos
11.
Cancer Epidemiol Biomarkers Prev ; 28(10): 1704-1711, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31358519

RESUMO

BACKGROUND: Liver cancer is the second leading cause of cancer-related deaths worldwide. With a predicted 2.4-fold rise in liver cancer incidence by 2020, there is an urgent need for early, inexpensive diagnostic biomarkers to deploy in the clinic. METHODS: We employed ultraperformance liquid chromatography tandem mass-spectrometry (UPLC/MS-MS) for the quantitation of four metabolites, creatine riboside (CR), N-acetylneuraminic acid (NANA), cortisol sulfate, and a lipid molecule designated as 561+, in urine samples from the NCI-MD cohort comprising 98 hepatocellular carcinoma (HCC) cases, 101 high-risk subjects, and 95 controls. Validation was carried out in the TIGER-LC cohort [n = 370 HCC and intrahepatic cholangiocarcinoma (ICC) cases, 471 high-risk subjects, 251 controls], where ICC, the second most common primary hepatic malignancy, is highly prevalent. Metabolite quantitation was also conducted in TIGER-LC tissue samples (n = 48 ICC; n = 51 HCC). RESULTS: All profiled metabolites were significantly increased in liver cancer when compared with high-risk subjects and controls in the NCI-MD study. In the TIGER-LC cohort, the four-metabolite profile was superior at classifying ICC than a clinically utilized marker, CA19-9, and their combination led to a significantly improved model (AUC = 0.88, P = 4E-8). Metabolites CR and NANA were significantly elevated in ICC when compared with HCC cases in both urine and tissue samples. High levels of CR were associated with poorer prognosis in ICC. CONCLUSIONS: Four metabolites are significantly increased in HCC and ICC and are robust at classifying ICC in combination with the clinically utilized marker CA19-9. IMPACT: Noninvasive urinary metabolite biomarkers hold promise for diagnostic and prognostic evaluation of ICC.


Assuntos
Neoplasias dos Ductos Biliares/urina , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Biomarcadores Tumorais/urina , Colangiocarcinoma/urina , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Estudos de Casos e Controles , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Curva ROC
12.
Artigo em Inglês | MEDLINE | ID: mdl-30079401

RESUMO

Microtubules are highly dynamic structures that play an integral role in fundamental cellular functions. Different α- and ß-tubulin isotypes are thought to confer unique dynamic properties to microtubules. The tubulin isotypes have highly conserved structures, differing mainly in their C-terminal tail sequences. However, little is known about the importance of the C-terminal tail in regulating and co-ordinating microtubule dynamics. We developed syngeneic human cell models using gene-editing to precisely modify the ß-tubulin C-terminal tail region while preserving the endogenous microtubule network. Fluorescent microscopy of live cells, coupled with advanced image analysis revealed that the ß-tubulin C-terminal tails differentially co-ordinate the collective and individual dynamic behaviour of microtubules by affecting microtubule growth rates and explorative microtubule assembly in an isotype-specific manner. Furthermore, ßI- and ßIII-tubulin C-terminal tails differentially regulate the sensitivity of microtubules to tubulin-binding agents and the microtubule depolymerising protein MCAK. The sequence of the ß-tubulin tail encodes regulatory information that instructs and co-ordinates microtubule dynamics, thereby fine-tuning microtubule dynamics to support cellular functions.

13.
Int J Mol Sci ; 18(7)2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28677634

RESUMO

Tubulin proteins, as components of the microtubule cytoskeleton perform critical cellular functions throughout all phases of the cell cycle. Altered tubulin isotype composition of microtubules is emerging as a feature of aggressive and treatment refractory cancers. Emerging evidence highlighting a role for tubulin isotypes in differentially influencing microtubule behaviour and broader functional networks within cells is illuminating a complex role for tubulin isotypes regulating cancer biology and chemotherapy resistance. This review focuses on the role of different tubulin isotypes in microtubule dynamics as well as in oncogenic changes that provide a survival or proliferative advantage to cancer cells within the tumour microenvironment and during metastatic processes. Consideration of the role of tubulin isotypes beyond their structural function will be essential to improving the current clinical use of tubulin-targeted chemotherapy agents and informing the development of more effective cancer therapies.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/genética , Tubulina (Proteína)/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Metabolismo Energético , Regulação Neoplásica da Expressão Gênica , Humanos , Microtúbulos/metabolismo , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Isoformas de Proteínas , Transdução de Sinais , Estresse Fisiológico , Tubulina (Proteína)/metabolismo , Microambiente Tumoral/genética
14.
Carcinogenesis ; 37(8): 787-798, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27207668

RESUMO

Non-small cell lung cancer (NSCLC) survival rates are dismal and high ßIII-tubulin expression is associated with chemotherapy drug resistance and tumor aggressiveness in this disease. Mounting evidence supports a role for ßIII-tubulin in promoting cell survival in the harsh tumor microenvironment, which is characterized by poor nutrient supply. This study aimed to investigate the role of ßIII-tubulin in glucose stress response signaling and the survival and proliferation of NSCLC cells. This study revealed that ßIII-tubulin regulates cellular metabolism and glucose stress response signaling in NSCLC cells to promote cell survival and proliferation in glucose starvation. ßIII-Tubulin decreases the reliance of cells on glycolytic metabolism, priming them to cope with variable nutrient supply present within the tumor microenvironment. ßIII-Tubulin protects cells from endoplasmic reticulum (ER) stress and reduces both basal and glucose starvation-induced autophagy to maintain cell survival and proliferation. ßIII-Tubulin enables rapid Akt activation in response to glucose starvation and co-immunoprecipitates with the master regulator of the ER stress response GRP78. Furthermore, suppression of ßIII-tubulin delays the association of GRP78 with Akt in response to glucose starvation with the potential to influence Akt activation and ER homeostasis under these conditions. Together these results identify that ßIII-tubulin regulates glucose metabolism and alters glucose starvation stress signaling to promote cell proliferation and survival in NSCLC cells. This elucidates a hitherto unknown role for this microtubule protein and provides insight into correlations between high ßIII-tubulin expression and poor patient outcome in this disease.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células/genética , Estresse do Retículo Endoplasmático/genética , Tubulina (Proteína)/genética , Autofagia/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Resistencia a Medicamentos Antineoplásicos , Chaperona BiP do Retículo Endoplasmático , Glucose/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Transdução de Sinais/genética , Tubulina (Proteína)/metabolismo , Microambiente Tumoral/genética
15.
Cancer Res ; 75(2): 415-25, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25414139

RESUMO

ßIII-tubulin (encoded by TUBB3) expression is associated with therapeutic resistance and aggressive disease in non-small cell lung cancer (NSCLC), but the basis for its pathogenic influence is not understood. Functional and differential proteomics revealed that ßIII-tubulin regulates expression of proteins associated with malignant growth and metastases. In particular, the adhesion-associated tumor suppressor maspin was differentially regulated by ßIII-tubulin. Functionally, ßIII-tubulin suppression altered cell morphology, reduced tumor spheroid outgrowth, and increased sensitivity to anoikis. Mechanistically, the PTEN/AKT signaling axis was defined as a critical pathway regulated by ßIII-tubulin in NSCLC cells. ßIII-Tubulin blockage in vivo reduced tumor incidence and growth. Overall, our findings revealed how ßIII-tubulin influences tumor growth in NSCLC, defining new biologic functions and mechanism of action of ßIII-tubulin in tumorigenesis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Anoikis/fisiologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Xenoenxertos , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Serpinas/biossíntese , Transdução de Sinais , Esferoides Celulares
16.
Front Oncol ; 4: 153, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24995158

RESUMO

Microtubules are highly dynamic structures, which consist of α- and ß-tubulin heterodimers, and are involved in cell movement, intracellular trafficking, and mitosis. In the context of cancer, the tubulin family of proteins is recognized as the target of the tubulin-binding chemotherapeutics, which suppress the dynamics of the mitotic spindle to cause mitotic arrest and cell death. Importantly, changes in microtubule stability and the expression of different tubulin isotypes as well as altered post-translational modifications have been reported for a range of cancers. These changes have been correlated with poor prognosis and chemotherapy resistance in solid and hematological cancers. However, the mechanisms underlying these observations have remained poorly understood. Emerging evidence suggests that tubulins and microtubule-associated proteins may play a role in a range of cellular stress responses, thus conferring survival advantage to cancer cells. This review will focus on the importance of the microtubule-protein network in regulating critical cellular processes in response to stress. Understanding the role of microtubules in this context may offer novel therapeutic approaches for the treatment of cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA