Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Lancet Glob Health ; 11(7): e1075-e1085, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37349034

RESUMO

BACKGROUND: Genomic surveillance of SARS-CoV-2 is crucial for monitoring the spread of COVID-19 and guiding public health decisions, but the capacity for SARS-CoV-2 testing and sequencing in Africa is low. We integrated SARS-CoV-2 surveillance into an existing influenza surveillance network with the aim of providing insights into SARS-CoV-2 transmission and genomics in Ghana. METHODS: In this molecular epidemiological analysis, which is part of a wider multifaceted prospective observational study, we collected national SARS-CoV-2 test data from 35 sites across 16 regions in Ghana from Sept 1, 2020, to Nov 30, 2021, via the Ghanaian integrated influenza and SARS-CoV-2 surveillance network. SARS-CoV-2-positive samples collected through this integrated national influenza surveillance network and from international travellers arriving in Accra were sequenced with Oxford Nanopore Technology sequencing and the ARTIC tiled amplicon method. The sequence lineages were typed with pangolin and the phylogenetic analysis was conducted with IQ-Tree2 and TreeTime. FINDINGS: During the study period, 5495 samples were submitted for diagnostic testing through the national influenza surveillance network (2121 [46·1%] of 4021 samples with complete demographic data were from female individuals and 2479 [53·9%] of 4021 samples were from male individuals). We also obtained 2289 samples from travellers who arrived in Accra and had a positive lateral flow test, of whom 1626 (71·0%, 95% CI 69·1-72·9) were confirmed to be SARS-CoV-2 positive. Co-circulation of influenza and SARS-CoV-2 in Ghana was detected, with increased cases of influenza in November, 2020, November, 2021, and January and June, 2021. In 4124 samples from individuals with influenza-like illness, SARS-CoV-2 was identified in 583 (14·1%, 95% CI 13·1-15·2) samples and influenza in 356 (8·6%, 7·8-9·5). Conversely, in 476 samples from individuals with of severe acute respiratory illness, SARS-CoV-2 was detected in 58 (12·2%, 9·5-15·5) samples and influenza in 95 (19·9%, 16·5-23·9). We detected four waves of SARS-CoV-2 infections in Ghana; each wave was driven by a different variant: B.1 and B.1.1 were the most prevalent lineages in wave 1, alpha (B.1.1.7) was responsible for wave 2, delta (B.1.617.2) and its sublineages (closely related to delta genomes from India) were responsible for wave 3, and omicron variants were responsible for wave 4. We detected omicron variants among 47 (32%) of 145 samples from travellers during the start of the omicron spread in Ghana (wave 4). INTERPRETATION: This study shows the value of repurposing existing influenza surveillance platforms to monitor SARS-CoV-2. Influenza continued to circulate in Ghana in 2020 and 2021, and remained a major cause of severe acute respiratory illness. We detected importations of SARS-CoV-2 variants into Ghana, including those that did or did not lead to onward community transmission. Investment in strengthening national influenza surveillance platforms in low-income and middle-income countries has potential for ongoing monitoring of SARS-CoV-2 and future pandemics. FUNDING: The EDCTP2 programme supported by the EU.


Assuntos
COVID-19 , Influenza Humana , Feminino , Masculino , Humanos , SARS-CoV-2/genética , Gana/epidemiologia , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Teste para COVID-19 , Filogenia , COVID-19/diagnóstico , COVID-19/epidemiologia , Genômica
2.
Commun Biol ; 5(1): 666, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790808

RESUMO

B.1.1.7 lineage SARS-CoV-2 is more transmissible, leads to greater clinical severity, and results in modest reductions in antibody neutralization. Subgenomic RNA (sgRNA) is produced by discontinuous transcription of the SARS-CoV-2 genome. Applying our tool (periscope) to ARTIC Network Oxford Nanopore Technologies genomic sequencing data from 4400 SARS-CoV-2 positive clinical samples, we show that normalised sgRNA is significantly increased in B.1.1.7 (alpha) infections (n = 879). This increase is seen over the previous dominant lineage in the UK, B.1.177 (n = 943), which is independent of genomic reads, E cycle threshold and days since symptom onset at sampling. A noncanonical sgRNA which could represent ORF9b is found in 98.4% of B.1.1.7 SARS-CoV-2 infections compared with only 13.8% of other lineages, with a 16-fold increase in median sgRNA abundance. We demonstrate that ORF9b protein levels are increased 6-fold in B.1.1.7 compared to a B lineage virus in vitro. We hypothesise that increased ORF9b in B.1.1.7 is a direct consequence of a triple nucleotide mutation in nucleocapsid (28280:GAT > CAT, D3L) creating a transcription regulatory-like sequence complementary to a region 3' of the genomic leader. These findings provide a unique insight into the biology of B.1.1.7 and support monitoring of sgRNA profiles to evaluate emerging potential variants of concern.


Assuntos
COVID-19 , RNA , COVID-19/diagnóstico , COVID-19/genética , Humanos , SARS-CoV-2/genética
3.
J Acoust Soc Am ; 151(2): 939, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35232076

RESUMO

There has been increased interest in improving severe weather detection by supplementing the conventional operational radar network with an infrasound observation network, which may be able to detect distinct sub-audible signatures from tornadic supercells. While there is evidence that tornadic thunderstorms exhibit observable infrasound signals, what is not well-understood is whether these infrasound signals are unique to tornadic supercells (compared to nontornadic supercells) or whether there is useful signal prior to tornadogenesis, which would be most relevant to forecasters. Using simulations of supercells, tailored to represent acoustic waves with frequencies from 0.1 to 2 Hz, spectral analysis reveals that both nontornadic and pre-tornadic supercells produce strikingly similar sound pressure levels at the surface, even in close spatial proximity to the storms (less than 20 km). Sensitivity tests employing varying microphysics schemes also show similar acoustic emissions between supercells. Riming of supercooled water droplets in the upper-troposphere is the sole mechanism generating high-frequency pressure waves in supercells prior to tornadogenesis or during tornadogenesis-failure; however, riming occurs continuously in mature nontornadic and tornadic supercells. Our simulations found no clear evidence that infrasound produced by supercells prior to tornado formation (compared to nontornadic supercells) is sufficiently distinct to improve lead-time of tornado warnings.

5.
Nat Commun ; 13(1): 671, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115517

RESUMO

Hospital outbreaks of COVID19 result in considerable mortality and disruption to healthcare services and yet little is known about transmission within this setting. We characterise within hospital transmission by combining viral genomic and epidemiological data using Bayesian modelling amongst 2181 patients and healthcare workers from a large UK NHS Trust. Transmission events were compared between Wave 1 (1st March to 25th J'uly 2020) and Wave 2 (30th November 2020 to 24th January 2021). We show that staff-to-staff transmissions reduced from 31.6% to 12.9% of all infections. Patient-to-patient transmissions increased from 27.1% to 52.1%. 40%-50% of hospital-onset patient cases resulted in onward transmission compared to 4% of community-acquired cases. Control measures introduced during the pandemic likely reduced transmissions between healthcare workers but were insufficient to prevent increasing numbers of patient-to-patient transmissions. As hospital-acquired cases drive most onward transmission, earlier identification of nosocomial cases will be required to break hospital transmission chains.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Genoma Viral , Epidemiologia Molecular , Pandemias , SARS-CoV-2/genética , Teorema de Bayes , Estudos de Coortes , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/transmissão , Surtos de Doenças , Genômica , Pessoal de Saúde , Hospitais , Humanos , Reino Unido/epidemiologia
6.
iScience ; 24(11): 103353, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34729465

RESUMO

We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.

7.
Front Microbiol ; 12: 722838, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603246

RESUMO

Background: In order to understand the molecular epidemiology of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Sri Lanka, since March 2020, we carried out genomic sequencing overlaid on available epidemiological data until April 2021. Methods: Whole genome sequencing was carried out on diagnostic sputum or nasopharyngeal swabs from 373 patients with COVID-19. Molecular clock phylogenetic analysis was undertaken to further explore dominant lineages. Results: The B.1.411 lineage was most prevalent, which was established in Sri Lanka and caused outbreaks throughout the country until March 2021. The estimated time of the most recent common ancestor (tMRCA) of this lineage was June 1, 2020 (with 95% lower and upper bounds March 30 to July 27) suggesting cryptic transmission may have occurred, prior to a large epidemic starting in October 2020. Returning travellers were identified with infections caused by lineage B.1.258, as well as the more transmissible B.1.1.7 lineage, which has replaced B.1.411 to fuel the ongoing large outbreak in the country. Conclusions: The large outbreak that started in early October, is due to spread of a single virus lineage, B.1.411 until the end of March 2021, when B.1.1.7 emerged and became the dominant lineage.

8.
Pathog Immun ; 6(2): 27-49, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34541432

RESUMO

BACKGROUND: Genetic variations across the SARS-CoV-2 genome may influence transmissibility of the virus and the host's anti-viral immune response, in turn affecting the frequency of variants over time. In this study, we examined the adjacent amino acid polymorphisms in the nucleocapsid (R203K/G204R) of SARS-CoV-2 that arose on the background of the spike D614G change and describe how strains harboring these changes became dominant circulating strains globally. METHODS: Deep-sequencing data of SARS-CoV-2 from public databases and from clinical samples were analyzed to identify and map genetic variants and sub-genomic RNA transcripts across the genome. Results: Sequence analysis suggests that the 3 adjacent nucleotide changes that result in the K203/R204 variant have arisen by homologous recombination from the core sequence of the leader transcription-regulating sequence (TRS) rather than by stepwise mutation. The resulting sequence changes generate a novel sub-genomic RNA transcript for the C-terminal dimerization domain of nucleocapsid. Deep-sequencing data from 981 clinical samples confirmed the presence of the novel TRS-CS-dimerization domain RNA in individuals with the K203/R204 variant. Quantification of sub-genomic RNA indicates that viruses with the K203/R204 variant may also have increased expression of sub-genomic RNA from other open reading frames. CONCLUSIONS: The finding that homologous recombination from the TRS may have occurred since the introduction of SARS-CoV-2 in humans, resulting in both coding changes and novel sub-genomic RNA transcripts, suggests this as a mechanism for diversification and adaptation within its new host.

9.
bioRxiv ; 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-33880475

RESUMO

BACKGROUND: Genetic variations across the SARS-CoV-2 genome may influence transmissibility of the virus and the host’s anti-viral immune response, in turn affecting the frequency of variants over-time. In this study, we examined the adjacent amino acid polymorphisms in the nucleocapsid (R203K/G204R) of SARS-CoV-2 that arose on the background of the spike D614G change and describe how strains harboring these changes became dominant circulating strains globally. METHODS: Deep sequencing data of SARS-CoV-2 from public databases and from clinical samples were analyzed to identify and map genetic variants and sub-genomic RNA transcripts across the genome. RESULTS: Sequence analysis suggests that the three adjacent nucleotide changes that result in the K203/R204 variant have arisen by homologous recombination from the core sequence (CS) of the leader transcription-regulating sequence (TRS) rather than by stepwise mutation. The resulting sequence changes generate a novel sub-genomic RNA transcript for the C-terminal dimerization domain of nucleocapsid. Deep sequencing data from 981 clinical samples confirmed the presence of the novel TRS-CS-dimerization domain RNA in individuals with the K203/R204 variant. Quantification of sub-genomic RNA indicates that viruses with the K203/R204 variant may also have increased expression of sub-genomic RNA from other open reading frames. CONCLUSIONS: The finding that homologous recombination from the TRS may have occurred since the introduction of SARS-CoV-2 in humans resulting in both coding changes and novel sub-genomic RNA transcripts suggests this as a mechanism for diversification and adaptation within its new host.

10.
Genome Res ; 31(4): 645-658, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33722935

RESUMO

We have developed periscope, a tool for the detection and quantification of subgenomic RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed "subgenomic RNAs." sgRNAs are produced through discontinuous transcription, which relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of the TRS-L, which is located in the 5' UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is therefore found at the 5' end of all sgRNA. We applied periscope to 1155 SARS-CoV-2 genomes from Sheffield, United Kingdom, and validated our findings using orthogonal data sets and in vitro cell systems. By using a simple local alignment to detect reads that contain the leader sequence, we were able to identify and quantify reads arising from canonical and noncanonical sgRNA. We were able to detect all canonical sgRNAs at the expected abundances, with the exception of ORF10. A number of recurrent noncanonical sgRNAs are detected. We show that the results are reproducible using technical replicates and determine the optimum number of reads for sgRNA analysis. In VeroE6 ACE2+/- cell lines, periscope can detect the changes in the kinetics of sgRNA in orthogonal sequencing data sets. Finally, variants found in genomic RNA are transmitted to sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide comprehensive analysis of SARS-CoV-2 sgRNA.


Assuntos
Genoma Viral , RNA Viral/genética , SARS-CoV-2/genética , Análise de Sequência de RNA/métodos , Animais , Sequência de Bases , Chlorocebus aethiops , Humanos , Limite de Detecção , Células Vero
11.
J Clin Microbiol ; 59(6)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33782112

RESUMO

LamPORE is a novel diagnostic platform for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA combining loop-mediated isothermal amplification with nanopore sequencing, which could potentially be used to analyze thousands of samples per day on a single instrument. We evaluated the performance of LamPORE against reverse transcriptase PCR (RT-PCR) using RNA extracted from spiked respiratory samples and stored nose and throat swabs collected at two UK hospitals. The limit of detection of LamPORE was 10 genome copies/µl of extracted RNA, which is above the limit achievable by RT-PCR, but was not associated with a significant reduction of sensitivity in clinical samples. Positive clinical specimens came mostly from patients with acute symptomatic infection, and among them, LamPORE had a diagnostic sensitivity of 99.1% (226/228; 95% confidence interval [CI], 96.9% to 99.9%). Among negative clinical specimens, including 153 with other respiratory pathogens detected, LamPORE had a diagnostic specificity of 99.6% (278/279; 98.0% to 100.0%). Overall, 1.4% (7/514; 0.5% to 2.9%) of samples produced an indeterminate result on first testing, and repeat LamPORE testing on the same RNA extract had a reproducibility of 96.8% (478/494; 94.8% to 98.1%). LamPORE has a similar performance as RT-PCR for the diagnosis of SARS-CoV-2 infection in symptomatic patients and offers a promising approach to high-throughput testing.


Assuntos
COVID-19 , Sequenciamento por Nanoporos , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , RNA Viral/genética , Reprodutibilidade dos Testes , SARS-CoV-2 , Sensibilidade e Especificidade
12.
J Neurol Neurosurg Psychiatry ; 92(5): 510-518, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33589474

RESUMO

OBJECTIVE: The clinical utility of routine genetic sequencing in amyotrophic lateral sclerosis (ALS) is uncertain. Our aim was to determine whether routine targeted sequencing of 44 ALS-relevant genes would have a significant impact on disease subclassification and clinical care. METHODS: We performed targeted sequencing of a 44-gene panel in a prospective case series of 100 patients with ALS recruited consecutively from the Sheffield Motor Neuron Disorders Clinic, UK. All participants were diagnosed with ALS by a specialist Consultant Neurologist. 7/100 patients had familial ALS, but the majority were apparently sporadic cases. RESULTS: 21% of patients with ALS carried a confirmed pathogenic or likely pathogenic mutation, of whom 93% had no family history of ALS. 15% met the inclusion criteria for a current ALS genetic-therapy trial. 5/21 patients with a pathogenic mutation had an additional variant of uncertain significance (VUS). An additional 21% of patients with ALS carried a VUS in an ALS-associated gene. Overall, 13% of patients carried more than one genetic variant (pathogenic or VUS). Patients with ALS carrying two variants developed disease at a significantly earlier age compared with patients with a single variant (median age of onset=56 vs 60 years, p=0.0074). CONCLUSIONS: Routine screening for ALS-associated pathogenic mutations in a specialised ALS referral clinic will impact clinical care in 21% of cases. An additional 21% of patients have variants in the ALS gene panel currently of unconfirmed significance after removing non-specific or predicted benign variants. Overall, variants within known ALS-linked genes are of potential clinical importance in 42% of patients.


Assuntos
Esclerose Lateral Amiotrófica/genética , Testes Genéticos , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
Cell ; 182(4): 812-827.e19, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32697968

RESUMO

A SARS-CoV-2 variant carrying the Spike protein amino acid change D614G has become the most prevalent form in the global pandemic. Dynamic tracking of variant frequencies revealed a recurrent pattern of G614 increase at multiple geographic levels: national, regional, and municipal. The shift occurred even in local epidemics where the original D614 form was well established prior to introduction of the G614 variant. The consistency of this pattern was highly statistically significant, suggesting that the G614 variant may have a fitness advantage. We found that the G614 variant grows to a higher titer as pseudotyped virions. In infected individuals, G614 is associated with lower RT-PCR cycle thresholds, suggestive of higher upper respiratory tract viral loads, but not with increased disease severity. These findings illuminate changes important for a mechanistic understanding of the virus and support continuing surveillance of Spike mutations to aid with development of immunological interventions.


Assuntos
Betacoronavirus/genética , Betacoronavirus/patogenicidade , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/genética , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/fisiopatologia , Monitoramento Epidemiológico , Aptidão Genética , Variação Genética , Sistemas de Informação Geográfica , Hospitalização , Humanos , Pandemias , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/fisiopatologia , Sistema Respiratório/virologia , SARS-CoV-2 , Índice de Gravidade de Doença , Carga Viral
14.
Clin Orthop Relat Res ; 478(1): 179-188, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794491

RESUMO

BACKGROUND: Muscle injury may result in damage to the vasculature, rendering it unable to meet the metabolic demands of muscle regeneration and healing. Therefore, therapies frequently aim to maintain, restore, or improve blood supply to the injured muscle. Although there are several options to assess the vascular outcomes of these therapies, few are capable of spatially assessing perfusion in large volumes of tissue. QUESTIONS/PURPOSES: Can dynamic contrast-enhanced CT (DCE-CT) imaging acquired with a clinical CT scanner be used in a rat model to quantify perfusion in the anterior tibialis muscle at spatially relevant volumes, as assessed by (1) the blood flow rate and tissue blood volume in the muscle after three levels of muscle stimulation (low, medium, and maximum) relative to baseline as determined by the non-stimulated contralateral leg; and (2) how do these measurements compare with those obtained by the more standard approach of microsphere perfusion? METHODS: The right anterior tibialis muscles of adult male Sprague Dawley rats were randomized to low- (n = 10), medium- (n = 6), or maximum- (n = 3) level (duty cycles of 2.5%, 5.0%, and 20%, respectively) nerve electrode coupled muscle stimulation directly followed by DCE-CT imaging. Tissue blood flow and blood volume maps were created using commercial software and volumetrically measured using NIH software. Although differences in blood flow were detectable across the studied levels of muscle stimulation, a review of the evidence suggested the absolute blood flow quantified was underestimated. Therefore, at a later date, a separate set of adult male Sprague Dawley rats were randomized for microsphere perfusion (n = 7) to define blood flow in the animal model with an accepted standard. With this technique, intra-arterial particles sized to freely flow in blood but large enough to lodge in tissue capillaries were injected. Simultaneously, blood sampling at a fixed flow rate was simultaneously performed to provide a fixed blood flow rate sample. The tissues of interest were then explanted and assessed for the total number of particles per tissue volume. Tissue blood flow rate was then calculated based on the particle count ratio within the reference sample. Note that a tissue's blood volume cannot be calculated with this method. Comparison analysis to the non-stimulated baseline leg was performed using two-tailed paired student t-test. An ANOVA was used to compare difference between stimulation groups. RESULTS: DCE-CT measured (mean ± SD) increasing tissue blood flow differences in stimulated anterior tibialis muscle at 2.5% duty cycle (32 ± 5 cc/100 cc/min), 5.0% duty cycle (46 ± 13 cc/100 cc/min), and 20% duty cycle (73 ± 3 cc/100 cc/min) compared with the paired contralateral non-stimulated anterior tibialis muscle (10 ± 2 cc/100 cc/min, mean difference 21 cc/100 cc/min [95% CI 17.08 to 25.69]; 9 ± 1 cc/100 cc/min, mean difference 37 cc/100 cc/min [95% CI 23.06 to 50.11]; and 11 ± 2 cc/100 cc/min, mean difference 62 cc/100 cc/min [95% CI 53.67 to 70.03]; all p < 0.001). Similarly, DCE-CT showed increasing differences in tissue blood volumes within the stimulated anterior tibialis muscle at 2.5% duty cycle (23.2 ± 4.2 cc/100 cc), 5.0% duty cycle (39.2 ± 7.2 cc/100 cc), and 20% duty cycle (52.5 ± 13.1 cc/100 cc) compared with the paired contralateral non-stimulated anterior tibialis muscle (3.4 ± 0.7 cc/100 cc, mean difference 19.8 cc/100 cc [95% CI 16.46 to 23.20]; p < 0.001; 3.5 ± 0.4 cc/100 cc, mean difference 35.7 cc/100 cc [95% CI 28.44 to 43.00]; p < 0.001; and 4.2 ± 1.3 cc/100 cc, mean difference 48.3 cc/100 cc [95% CI 17.86 to 78.77]; p = 0.010). Microsphere perfusion measurements also showed an increasing difference in tissue blood flow in the stimulated anterior tibialis muscle at 2.5% duty cycle (62 ± 43 cc/100 cc/min), 5.0% duty cycle (89 ± 52 cc/100 cc/min), and 20% duty cycle (313 ± 269 cc/100 cc/min) compared with the paired contralateral non-stimulated anterior tibialis muscle (8 ± 4 cc/100 cc/min, mean difference 55 cc/100 cc/min [95% CI 15.49 to 94.24]; p = 0.007; 9 ± 9 cc/100 cc/min, mean difference 79 cc/100 cc/min [95% CI 33.83 to 125.09]; p = 0.003; and 18 ± 18 cc/100 cc/min, mean difference 295 cc/100 cc/min [95% CI 8.45 to 580.87]; p = 0.023). Qualitative comparison between the methods suggests that DCE-CT values underestimate tissue blood flow with a post-hoc ANOVA showing DCE-CT blood flow values within the 2.5% duty cycle group (32 ± 5 cc/100 cc/min) to be less than the microsphere perfusion value (62 ± 43 cc/100 cc/min) with a mean difference of 31 cc/100 cc/min (95% CI 2.46 to 60.23; p = 0.035). CONCLUSIONS: DCE-CT using a clinical scanner is a feasible modality to measure incremental changes of blood flow and tissue blood volume within a spatially challenged small animal model. Care should be taken in studies where true blood flow values are needed, as this particular small-volume muscle model suggests true blood flow is underestimated using the specific adaptions of DCE-CT acquisition and image processing chosen. CLINICAL RELEVANCE: CT perfusion is a clinically available modality allowing for translation of science from bench to bedside. Adapting the modality to fit small animal models that are relevant to muscle healing may hasten time to clinical utility.


Assuntos
Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/diagnóstico por imagem , Animais , Meios de Contraste , Masculino , Imagem de Perfusão , Ratos , Ratos Sprague-Dawley , Tomografia Computadorizada por Raios X
15.
Int J Neonatal Screen ; 5(4): 40, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31844782

RESUMO

Next generation DNA sequencing (NGS) has the potential to improve the diagnostic and prognostic utility of newborn screening programmes. This study assesses the feasibility of automating NGS on dried blood spot (DBS) DNA in a United Kingdom National Health Service (UK NHS) laboratory. An NGS panel targeting the entire coding sequence of five genes relevant to disorders currently screened for in newborns in the UK was validated on DBS DNA. An automated process for DNA extraction, NGS and bioinformatics analysis was developed. The process was tested on DBS to determine feasibility, turnaround time and cost. The analytical sensitivity of the assay was 100% and analytical specificity was 99.96%, with a mean 99.5% concordance of variant calls between DBS and venous blood samples in regions with ≥30× coverage (96.8% across all regions; all variant calls were single nucleotide variants (SNVs), with indel performance not assessed). The pipeline enabled processing of up to 1000 samples a week with a turnaround time of four days from receipt of sample to reporting. This study concluded that it is feasible to automate targeted NGS on routine DBS samples in a UK NHS laboratory setting, but it may not currently be cost effective as a first line test.

16.
Biomech Model Mechanobiol ; 18(4): 1031-1045, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30778884

RESUMO

Many computer vision algorithms have been presented to track surface deformations, but few have provided a direct comparison of measurements with other stereoscopic approaches and physics-based models. We have previously developed a phase-based cross-correlation algorithm to track dense distributions of displacements over three-dimensional surfaces. In the present work, we compare this algorithm with one that uses an independent tracking system, derived from an array of fluorescent microspheres. A smooth bicubic Hermite mesh was fitted to deformations obtained from the phase-based cross-correlation data. This mesh was then used to estimate the microsphere locations, which were compared to stereo reconstructions of the microsphere positions. The method was applied to a 35 mm × 35 mm × 35 mm soft silicone gel cube under indentation, with three square bands of microspheres placed around the indenter tip. At an indentation depth of 4.5 mm, the root-mean-square (RMS) differences between the reconstructed positions of the microspheres and their identified positions for the inner, middle, and outer bands were 60 µm, 20 µm, and 19 µm, respectively. The usefulness of the strain-tracking data for physics-based finite element modelling of large deformation mechanics was then demonstrated by estimating a neo-Hookean stiffness parameter for the gel. At the optimal constitutive parameter estimate, the RMS difference between the measured microsphere positions and their finite element model-predicted locations was 143 µm.


Assuntos
Modelos Biológicos , Análise de Elementos Finitos , Processamento de Imagem Assistida por Computador , Microesferas , Imagens de Fantasmas , Robótica , Propriedades de Superfície
17.
J Biomech Eng ; 139(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27760249

RESUMO

A triaxial force-sensitive microrobot was developed to dynamically perturb skin in multiple deformation modes, in vivo. Wiener static nonlinear identification was used to extract the linear dynamics and static nonlinearity of the force-displacement behavior of skin. Stochastic input forces were applied to the volar forearm and thenar eminence of the hand, producing probe tip perturbations in indentation and tangential extension. Wiener static nonlinear approaches reproduced the resulting displacements with variances accounted for (VAF) ranging 94-97%, indicating a good fit to the data. These approaches provided VAF improvements of 0.1-3.4% over linear models. Thenar eminence stiffness measures were approximately twice those measured on the forearm. Damping was shown to be significantly higher on the palm, whereas the perturbed mass typically was lower. Coefficients of variation (CVs) for nonlinear parameters were assessed within and across individuals. Individual CVs ranged from 2% to 11% for indentation and from 2% to 19% for extension. Stochastic perturbations with incrementally increasing mean amplitudes were applied to the same test areas. Differences between full-scale and incremental reduced-scale perturbations were investigated. Different incremental preloading schemes were investigated. However, no significant difference in parameters was found between different incremental preloading schemes. Incremental schemes provided depth-dependent estimates of stiffness and damping, ranging from 300 N/m and 2 Ns/m, respectively, at the surface to 5 kN/m and 50 Ns/m at greater depths. The device and techniques used in this research have potential applications in areas, such as evaluating skincare products, assessing skin hydration, or analyzing wound healing.


Assuntos
Testes de Dureza/métodos , Dureza/fisiologia , Modelos Biológicos , Modelos Estatísticos , Estimulação Física/métodos , Fenômenos Fisiológicos da Pele , Anisotropia , Simulação por Computador , Testes de Dureza/instrumentação , Humanos , Dinâmica não Linear , Estimulação Física/instrumentação , Reprodutibilidade dos Testes , Robótica/instrumentação , Robótica/métodos , Sensibilidade e Especificidade , Processos Estocásticos , Estresse Mecânico , Viscosidade
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 4411-4, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26737273

RESUMO

Characterizing the mechanical properties of skin may lead to improvements in surgical scarring, burns treatments, artificial skin science, and disease detection. We present a method of validating a phase-based crosscorrelation method of material point tracking, used to measure surface deformations in soft tissues, using a silicone gel phantom. Tracking of a high spatial-resolution speckle pattern was validated using independent fluorescent microsphere markers. A finite element mesh was deformed according to the tracked speckle pattern, and used to predict the location of the markers. Predictions of microsphere location were compared to stereo-reconstructions. Under a 2900 µm indentation, markers under rms displacements of 125 µm produced a discrepancy between prediction and reconstruction of 23 µm. The same deformation conditions were used to illustrate the use of surface tracking for identifying mechanical properties. A force-driven finite element mesh, using a Neo-Hookean constitutive model, reproduced the surface deformation with an rms error of 172 µm.


Assuntos
Propriedades de Superfície , Análise de Elementos Finitos , Modelos Biológicos , Imagens de Fantasmas , Estresse Mecânico
19.
Artigo em Inglês | MEDLINE | ID: mdl-23757148

RESUMO

The characterization of skin mechanics has many clinical implications and has been an active area of research for the past few decades. Biomechanical models have evolved from earlier empirical models to state-of-the-art structural models that provide linkage between tissue microstructure and macroscopic stress-strain response. To maximize the accuracy and predictive capabilities of such computational models, there is a need to reliably identify often a large number of unknown model parameters. This is critically dependent on the availability of experimental data that cover an extensive range of different deformation modes, and quantification of internal structural features, such as collagen orientation. To this end, future challenges should include the ongoing development of noninvasive instrumentation and imaging modalities for in vivo skin measurements. We highlight the important concept of tightly integrating computational models, instrumentation, and imaging modalities into a single platform to investigate skin biomechanics.


Assuntos
Pele/metabolismo , Fenômenos Biomecânicos , Colágeno/química , Colágeno/metabolismo , Módulo de Elasticidade , Elasticidade , Elastina/química , Elastina/metabolismo , Humanos , Modelos Biológicos , Pele/anatomia & histologia , Pele/patologia , Engenharia Tecidual , Viscosidade
20.
Artigo em Inglês | MEDLINE | ID: mdl-23365945

RESUMO

Identifying the mechanical properties of the skin has been the subject of much study in recent years, as such knowledge can provide insight into wound healing, wrinkling and minimization of scarring through surgical planning.


Assuntos
Imagens de Fantasmas , Pele , Anisotropia , Fenômenos Biomecânicos , Humanos , Imageamento Tridimensional/instrumentação , Robótica/instrumentação , Géis de Silicone , Fenômenos Fisiológicos da Pele , Estresse Mecânico , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA